Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Pseudomonas extremaustralis: una revisión de sus propiedades y características generales

Pseudomonas extremeustralis: a review of its properties and general characteristics



Abrir | Descargar


Sección
Articulo de Revisión

Cómo citar
Bejarano Carrasquilla, M. F., Urrego Caro, L. C. ., & Estupiñán Torres, S. M. (2025). Pseudomonas extremaustralis: una revisión de sus propiedades y características generales. Revista Nova, 23(44). https://doi.org/10.22490/

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Este estudio tiene como objetivo sintetizar y analizar la información disponible sobre Pseudomonas extremaustralis, una bacteria psicrotrófica aislada de la Antártida, conocida por su capacidad para adaptarse a condiciones ambientales extremas y su potencial en la biorremediación. Se realizó una revisión exhaustiva de la literatura utilizando el método PRISMA en bases de datos como ScienceDirect, Embase, PubMed, la Biblioteca Nacional de Medicina (NLM) y Google Scholar. Los criterios
de inclusión fueron artículos originales publicados después de 2019 que
mencionaran a la bacteria Pseudomonas extremaustralis.

Pseudomonas extremaustralis exhibe una notable flexibilidad metabólica, lo que le permite prosperar en ambientes con bajas temperaturas y altas concentraciones de contaminantes. Su capacidad para adquirir genes a través de la transferencia horizontal le otorga resistencia a metales pesados e hidrocarburos, mientras que su formación de biopelículas mejora la degradación de estos compuestos. Además, sintetiza polímeros de reserva como los polihidroxialcanoatos (PHA), que son cruciales para su supervivencia en entornos adversos.

En conclusión, Pseudomonas extremaustralis es un microorganismo altamente adaptable y versátil con aplicaciones potenciales en la biorremediación de ambientes contaminados. Su capacidad para degradar contaminantes y soportar condiciones extremas la convierte en una herramienta valiosa para mitigar la contaminación ambiental y en un modelo ideal para estudiar la adaptación microbiana.


Visitas del artículo 70 | Visitas PDF 49


Descargas

Los datos de descarga todavía no están disponibles.
  1. Brito MG. Producción de polihidroxialcanoatos en Pseudomonas
  2. extremaustralis: análisis del metabolismo en distintas condiciones y su
  3. influencia en la adaptabilidad frente al estrés [Internet]. [Buenos Aires,
  4. Argentina]: Universidad de Buenos Aires ; 2023. Disponible en:
  5. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7426_Brito.pdf
  6. López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A,
  7. et al. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate)
  8. Producer Isolated from an Antarctic Environment. Curr Microbiol [Internet].
  9. ;59(5):514–9. Disponible en: http://dx.doi.org/10.1007/s00284-009-9469-
  10. Solar Venero EC, Matera G, Vogel J, López NI, Tribelli PM. Small RNAs in
  11. the Antarctic bacterium Pseudomonas extremaustralis responsive to oxygen
  12. availability and oxidative stress. Environ Microbiol Rep [Internet]. 2022.
  13. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35689330/
  14. Sawada H, Fujikawa T, Nishiwaki Y, Horita H. Pseudomonas kitaguniensis sp.
  15. nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Syst Evol
  16. Microbiol [Internet]. 2020;70(5):3018–26. Disponible en: http://dx.doi.org/10.1099/ijsem.0.004123
  17. Ballesteros Rojas, Y Identificación de factores asociados a promoción de
  18. crecimiento vegetal en Bacillus Subtilis Atcc 6633 y Pseudomonas
  19. Extremaustralis Cmpuj U515 en el modelo de fríjol. [Internet]. Bogotá D.C:
  20. Universidad Colegio Mayor de Cundinamarca; 2018; 84p.Disponible en: https://repositorio.unicolmayor.edu.co/bitstream/handle/unicolmayor/3760/TRABAJO%20GRADO-YULI%20BALLESTEROS.pdf?sequence=1&isAllowed=y
  21. Yiseth FM. Identificación in silico de la capacidad de degradación de glifosato
  22. por Pseudomonas extremaustralis [Internet]. [Bogotá, Colombia]: Universidad
  23. Antonio Nariño; 2023. Disponible en: http://repositorio.uan.edu.co/handle/123456789/9019
  24. María TP. Influencia del regulador global Anr en la fisiología de Pseudomonas extremaustralis, una bacteria productora de polihidroxibutirato [Internet]. [Buenos Aires, Argentina]: Universidad de Buenos Aires; 2012. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5021_Tribelli.pdf
  25. Tribelli PM, Solar Venero EC, Ricardi MM, Gómez-Lozano M, Raiger Iustman
  26. LJ, Molin S, et al. Novel essential role of ethanol oxidation genes at low
  27. temperature revealed by transcriptome analysis in the antarctic bacterium
  28. Pseudomonas extremaustralis. PLoS One [Internet]. 2015;10(12):e0145353.
  29. Disponible en: http://dx.doi.org/10.1371/journal.pone.0145353
  30. Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Raiger Iustman
  31. LJ, et al. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol [Internet]. 2018. Disponible en:
  32. https://pubmed.ncbi.nlm.nih.gov/29116430/
  33. Ayub ND, Pettinari MJ, Méndez BS, López NI. The polyhydroxyalkanoate
  34. genes of a stress resistant Antarctic Pseudomonas are situated within a
  35. genomic island. Plasmid [Internet]. 2007;58(3):240–8. Disponible en:
  36. http://dx.doi.org/10.1016/j.plasmid.2007.05.003
  37. Verónica CM. Identificación y análisis de los genes asociados al metabolismo de polihidroxialcanoatos en Pseudomonas extremaustralis [Internet]. [Buenos Aires, Argentina]: Universidad de Buenos Aires; 2013. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5288_Catone.pd
  38. f
  39. Hnatush S, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine,
  40. Komplikevych S, Maslovska O, Moroz O, Peretyatko T, et al. Bacteria of the
  41. genus Pseudomonas isolated from Antarctic substrates. Ukr Antarkt Zh/Ukr
  42. Antarct J [Internet]. 2021;(2):58–75. Disponible en:
  43. http://uaj.uac.gov.ua/index.php/uaj/article/view/678
  44. Dickinson I, Goodall-Copestake W, Thorne M, Schlitt T, Ávila-Jiménez M,
  45. Pearce D. Extremophiles in an antarctic marine ecosystem. Microorganisms
  46. [Internet]. 2016;4(1):8. Disponible en: https://www.mdpi.com/2076-2607/4/1/8
  47. López MAG, Zenteno-Rojas A, Martinez-Romero E, Rincón-Molina CI,
  48. Vences-Guzmán MA, Ruíz-Valdiviezo VM, et al. Biodegradation and
  49. bioaccumulation of decachlorobiphenyl (DCB) by native strain Pseudomonas
  50. extremaustralis ADA-5. Water Air Soil Pollut [Internet]. 2021;232(5).
  51. Disponible en: http://dx.doi.org/10.1007/s11270-021-05122-2
  52. Rodriguez Mirque, Y Estudio de la cepa de pseudomonas extremaustralis
  53. cmpuju 515 como promotora de crecimiento en plantas de tomate. [Internet].
  54. Bogotá, Distrito Capital: Universidad Colegio Mayor de Cundinamarca; 2019;
  55. p. Disponible en:
  56. https://repositorio.unicolmayor.edu.co/handle/unicolmayor/267
  57. Thomassen GMB, Reiche T, Tennfjord CE, Mehli L. Antibiotic resistance
  58. properties among Pseudomonas spp. Associated with salmon processing environments. Microorganisms [Internet]. 2022; 10(7):1420. Disponible en:
  59. https://www.mdpi.com/2076-2607/10/7/1420
  60. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas
  61. genomes: diverse and adaptable. FEMS Microbiol Rev [Internet]. 2011;35(4):652–80. Disponible en: http://dx.doi.org/10.1111/j.1574-
  62. 2011.00269.x
  63. Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S,
  64. et al. Ecological features of trace elements tolerant microbes isolated from
  65. sewage sludge of urban wastewater treatment plant. Stress Biol [Internet].
  66. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38273092/
  67. Colonnella MA, Lizarraga L, Rossi L, Díaz Peña R, Egoburo D, López NI, et
  68. al. Effect of copper on diesel degradation in Pseudomonas extremaustralis.
  69. Extremophiles [Internet]. 2019 . Disponible en:
  70. https://pubmed.ncbi.nlm.nih.gov/30328541/
  71. Giambartolomei L. Análisis de estrategias involucradas con la adaptabilidad al frío y microaerobiosis en Pseudomonas extremaustralis [Internet]. [Buenos
  72. Aires, Argentina]: Universidad de Buenos Aires; 2023. Disponible en:
  73. https://bibliotecadigital.exactas.uba.ar/download/seminario/seminario_nBIO001646_Giambartolomei.pdf
  74. Farkas R, Toumi M, Abbaszade G, Bóka K, Takáts K, Tóth E. The acute
  75. impact of arsenic as(III) on the prokaryotic community composition and
  76. selected bacterial strains based on microcosm experiments. Geomicrobiol J
  77. [Internet]. 2023;40(5):413–26. Disponible en:
  78. http://dx.doi.org/10.1080/01490451.2023.2181469
  79. Venero ECS. Mecanismos de adaptabilidad a microaerobiosis y estrés
  80. oxidativo en Pseudomonas extremaustralis [Internet]. [Buenos Aires,
  81. Argentina]: UNIVERSIDAD DE BUENOS AIRES; 2020. Disponible en:
  82. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7438_SolarVene
  83. ro.pdf
  84. Finore I, Vigneron A, Vincent WF, Leone L, Di Donato P, Schiano Moriello A,
  85. et al. Novel psychrophiles and exopolymers from permafrost thaw lake
  86. sediments. Microorganisms [Internet]. 2020;8(9):1282. Disponible en:
  87. https://www.mdpi.com/2076-2607/8/9/1282
  88. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas cyclaminis sp.
  89. nov., a pathogen causing bacterial bud blight of cyclamen in Japan. Int J Syst
  90. Evol Microbiol [Internet]. 2019;71(3). Disponible en:
  91. http://dx.doi.org/10.1099/ijsem.0.004723
  92. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas petroselini sp. nov.,
  93. a pathogen causing bacterial rot of parsley in Japan. Int J Syst Evol Microbiol
  94. [Internet]. 2022;72(6). Disponible en: http://dx.doi.org/10.1099/ijsem.0.005424
  95. Vargas-Ordóñez A, Aguilar-Romero I, Villaverde J, Madrid F, Morillo E.
  96. Isolation of novel bacterial strains Pseudomonas extremaustralis CSW01 and
  97. stutzerimonas stutzeri CSW02 from sewage sludge for paracetamol
  98. biodegradation. Microorganisms [Internet]. 2023 Disponible en:
  99. https://pubmed.ncbi.nlm.nih.gov/36677487/
  100. López G, Diaz-Cárdenas C, Shapiro N, Woyke T, Kyrpides NC, David Alzate
  101. J, et al. Draft genome sequence of Pseudomonas extremaustralis strain
  102. USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand Genomic Sci [Internet]. 2017 Disponible en:
  103. https://pubmed.ncbi.nlm.nih.gov/29255573/
  104. Raiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC,
  105. López NI. Genome sequence analysis of Pseudomonas extremaustralis
  106. provides new insights into environmental adaptability and extreme conditions
  107. resistance. Extremophiles [Internet]. 2015 Disponible en:
  108. https://pubmed.ncbi.nlm.nih.gov/25316211/
  109. Tribelli PM, Méndez BS, López NI. Oxygen-sensitive global regulator, anr, is
  110. involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas
  111. extremaustralis. Microb Physiol [Internet]. 2010;19(4):180–8. Disponible en:
  112. https://karger.com/mmb/article-abstract/19/4/180/197135/Oxygen-Sensitive-
  113. Global-Regulator-Anr-Is-Involved?redirectedFrom=fulltext
  114. Tribelli PM, Nikel PI, Oppezzo OJ, López NI. Anr, the anaerobic global
  115. regulator, modulates the redox state and oxidative stress resistance in
  116. Pseudomonas extremaustralis. Microbiology [Internet].
  117. ;159(Pt_2):259–68. Disponible en:
  118. http://dx.doi.org/10.1099/mic.0.061085-0
  119. Solar Venero EC, Ricardi MM, Gomez-Lozano M, Molin S, Tribelli PM, López
  120. NI. Oxidative stress under low oxygen conditions triggers hyperflagellation
  121. and motility in the Antarctic bacterium Pseudomonas extremaustralis.
  122. Extremophiles [Internet]. 2019;23(5):587–97. Disponible en:
  123. http://dx.doi.org/10.1007/s00792-019-01110-x
  124. Ramzi AB, Matthew Minggu M, Ruslan US, Mohamad Hazwan FK, Mohamed
  125. Abdul P. Expression of Furfural Reductase Improved Furfural Tolerance in
  126. Antarctic Bacterium Pseudomonas extremaustralis. Sains Malays [Internet]. 2022;51(10):3163–70. Disponible en: http://www.ukm.my/jsm/pdf_files/SM-
  127. PDF-51-10-2022/4.pdf
  128. Nikovaev YA, Borzenkov IA, Demkina EV, Loiko NG, Kanapatskii TA,
  129. Perminova IV, et al. New biocomposite materials based on hydrocarbon-
  130. oxidizing microorganisms and their potential for oil products degradation.
  131. Microbiology [Internet]. 2021;90(6):731–42. Disponible en:
  132. http://dx.doi.org/10.1134/s0026261721060114
  133. Ayub ND, Pettinari MJ, Ruiz JA, López NI. A polyhydroxybutyrate-producing
  134. Pseudomonas sp. Isolated from antarctic environments with high stress
  135. resistance. Curr Microbiol [Internet]. 2004;49(3). Disponible en:
  136. http://dx.doi.org/10.1007/s00284-004-4254-2
  137. Tribelli PM, López NI. Poly(3-hydroxybutyrate) influences biofilm formation
  138. and motility in the novel Antarctic species Pseudomonas extremaustralis
  139. under cold conditions. Extremophiles [Internet]. 2011;15(5):541–7. Disponible
  140. en: http://dx.doi.org/10.1007/s00792-011-0384-1
  141. Salwoom L, Raja Abd Rahman R, Salleh A, Mohd. Shariff F, Convey P,
  142. Pearce D, et al. Isolation, characterisation, and lipase production of a cold-
  143. adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island,
  144. Antártica. Molecules [Internet]. 2019 [citado el 1 de febrero de
  145. ;24(4):715. Disponible en: https://www.mdpi.com/1420-3049/24/4/715
  146. Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for
  147. maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3
  148. during low temperature adaptation. Extremophiles [Internet].
  149. ;13(1):59–66. Disponible en: http://dx.doi.org/10.1007/s00792-008-0197-
  150. z
  151. Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI. High
  152. polyhydroxybutyrate production in Pseudomonas extremaustralis is
  153. associated with differential expression of horizontally acquired and core
  154. genome polyhydroxyalkanoate synthase genes. PLoS One [Internet].
  155. ;9(6):e98873. Disponible en:
  156. http://dx.doi.org/10.1371/journal.pone.0098873
  157. Tribelli PM, Raiger Iustman LJ, Catone MV, Di Martino C, Revale S, Méndez
  158. BS, et al. Genome sequence of the polyhydroxybutyrate producer
  159. Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium. J
  160. Bacteriol [Internet]. 2012;194(9):2381–2. Disponible en:
  161. http://dx.doi.org/10.1128/JB.00172-12
  162. Song Q, Deng X, Song R, Song X. Plant growth-promoting rhizobacteria
  163. promote growth of seedlings, regulate soil microbial community, and alleviate
  164. damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var.
  165. mongolica. Plant Dis [Internet]. 2022;106(10):2730–40. Disponible en:
  166. http://dx.doi.org/10.1094/pdis-11-21-2562-re
  167. Jiao H, Wang R, Qin W, Yang J. Screening of rhizosphere nitrogen fixing,
  168. phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.)
  169. Roem. and the effect on apple growth. J Plant Physiol [Internet].
  170. ;292(154142):154142. Disponible en:
  171. http://dx.doi.org/10.1016/j.jplph.2023.154142
  172. Vetrova AA, Trofimov SY, Kinzhaev RR, Avetov NA, Arzamazova AV, Puntus
  173. IF, et al. Development of microbial consortium for bioremediation of oil-
  174. contaminated soils in the middle ob region. Eurasian Soil Sci [Internet]. 2022;55(5):651–62. Disponible en:
  175. http://dx.doi.org/10.1134/s1064229322050106
  176. Kim J, Fuller ME, Hatzinger PB, Chu K-H. Draft genomes of three
  177. nitroguanidine-degrading bacteria: Pseudomonas extremaustralis NQ5 ,
  178. Arthrobacter strain NQ4, and Arthrobacter strain NQ7. Microbiol Resour
  179. Announc [Internet]. 2023 Disponible en:
  180. https://pubmed.ncbi.nlm.nih.gov/37477431/
  181. Tribelli PM, Pezzoni M, Brito MG, Montesinos NV, Costa CS, López NI.
  182. Response to lethal UVA radiation in the Antarctic bacterium Pseudomonas
  183. extremaustralis: polyhydroxybutyrate and cold adaptation as protective
  184. factors. Extremophiles [Internet]. 2020;24(2):265–75. Disponible en:
  185. http://dx.doi.org/10.1007/s00792-019-01152-1
  186. Tribelli PM, Hay AG, López NI. The global anaerobic regulator anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One [Internet].
  187. ;8(10):e76685. Disponible en:
  188. http://dx.doi.org/10.1371/journal.pone.0076685
  189. Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas:
  190. ecology to biotechnology. Front Microbiol [Internet]. 2023;14:1218708.
  191. Disponible en: http://dx.doi.org/10.3389/fmicb.2023.1218708
  192. Tribelli PM, Di Martino C, López NI, Raiger Iustman LJ. Biofilm lifestyle
  193. enhances diesel bioremediation and biosurfactant production in the Antarctic
  194. polyhydroxyalkanoate producer Pseudomonas extremaustralis.
  195. Biodegradation [Internet]. 2012;23(5):645–51. Disponible en:
  196. http://dx.doi.org/10.1007/s10532-012-9540-2
  197. Hu Y-Q, Zeng Y-X, Du Y, Zhao W, Li H-R, Han W, et al. Comparative
  198. genomic analysis of two Arctic Pseudomonas strains reveals insights into the
  199. aerobic denitrification in cold environments. BMC Genomics [Internet].
  200. ;24(1). Disponible en: http://dx.doi.org/10.1186/s12864-023-09638-1
  201. Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L,
  202. López NI, et al. Novel role of the LPS core glycosyltransferase WapH for cold
  203. adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS
  204. One [Internet]. 2018;13(2):e0192559. Disponible en:
  205. http://dx.doi.org/10.1371/journal.pone.0192559
  206. Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C.
  207. Pseudomonas fluorescens CHA0 Produces Enantio-pyochelin, the Optical
  208. Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin. J Biol
  209. Chem [Internet]. 2007;282(49):35546–53. Disponible en:
  210. https://pubmed.ncbi.nlm.nih.gov/17938167/
  211. Kim J, Fuller ME, Hatzinger PB, Chu K-H. Isolation and characterization of
  212. nitroguanidine-degrading microorganisms. Sci Total Environ [Internet].
  213. ;912(169184):169184. Disponible en:
  214. http://dx.doi.org/10.1016/j.scitotenv.2023.169184
  215. Ji B, Zhang X, Zhang S, Song H, Kong Z. Insights into the bacterial species
  216. and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment
  217. plant by using third-generation sequencing. J Biosci Bioeng [Internet].
  218. ;128(6):744–50. Disponible en:
  219. http://dx.doi.org/10.1016/j.jbiosc.2019.06.007
  220. Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Marshall SH, Olivares-
  221. Pacheco J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South
  222. Shetland, Antarctica. Braz J Microbiol [Internet]. 2018;49(4):695–702.
  223. Disponible en: http://dx.doi.org/10.1016/j.bjm.2018.02.005
  224. Nie M, Wu C, Tang Y, Shi G, Wang X, Hu C, et al. Selenium and Bacillus
  225. proteolyticus SES synergistically enhanced ryegrass to remediate Cu–Cd–Cr
  226. contaminated soil. Environ Pollut [Internet]. 2023;323(121272):121272.
  227. Disponible en: http://dx.doi.org/10.1016/j.envpol.2023.121272
  228. Gómez-Lozano M, Marvig RL, Molina-Santiago C, Tribelli PM, Ramos J-L,
  229. Molin S. Diversity of small RNAs expressed in Pseudomonas species. Environ
  230. Microbiol Rep [Internet]. 2015;7(2):227–36. Disponible en:
  231. http://dx.doi.org/10.1111/1758-2229.12233
  232. Nikolaev Y, Borzenkov I, Demkina E, Loiko N, Kanapatsky T, Perminova I, et
  233. al. Immobilization of cells of hydrocarbon-oxidizing bacteria for petroleum
  234. bioremediation using new materials. Int J Environ Res [Internet].
  235. ;15(6):971–84. Disponible en: http://dx.doi.org/10.1007/s41742-021-
  236. -5
  237. Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of
  238. Pseudomonas for bioremediation of oxyanions. Environ Microbiol Rep
  239. [Internet]. 2021;13(6):773–89. Disponible en: http://dx.doi.org/10.1111/1758-
  240. 12999
  241. Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of
  242. hydrocarbons and phenolic compounds- key catabolic degradation enzymes
  243. and new analytical platforms for comprehensive investigation. World J
  244. Microbiol Biotechnol [Internet]. 2022;38(10). Disponible en:
  245. http://dx.doi.org/10.1007/s11274-022-03349-7
  246. Rache-Arce DC, Machacado-Salas M, Rosero-García D. Hydrocarbon-
  247. degrading bacteria in Colombia: systematic review. Biodegradation [Internet].
  248. ;33(2):99–116. Disponible en: http://dx.doi.org/10.1007/s10532-022-
  249. -z
  250. Lorenzo V. Environmental Galenics: large-scale fortification of extant
  251. microbiomes with engineered bioremediation agents. Philos Trans R Soc
  252. Lond B Biol Sci [Internet]. 2022;377(1857). Disponible en:
  253. http://dx.doi.org/10.1098/rstb.2021.0395
  254. Hassen W, Cherif H, Werhani R, Raddadi N, Neifar M, Hassen A, et al.
  255. Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas
  256. species as detoxification agents. Arch Microbiol [Internet].
  257. ;203(7):4641–51. Disponible en: http://dx.doi.org/10.1007/s00203-021-
  258. -y
  259. Ghorbannezhad H, Moghimi H, Dastgheib SMM. Biodegradation of high
  260. molecular weight hydrocarbons under saline condition by halotolerant Bacillus
  261. subtilis and its mixed cultures with Pseudomonas species. Sci Rep [Internet].
  262. ;12(1). Disponible en: http://dx.doi.org/10.1038/s41598-022-17001-9
Sistema OJS 3.4.0.5 - Metabiblioteca |