Skip to main navigation menu Skip to main content Skip to site footer

Pseudomonas extremeustralis: a review of its properties and general characteristics

Pseudomonas extremaustralis: una revisión de sus propiedades y características generales




Section
Articulo de Revisión

How to Cite
Bejarano Carrasquilla, M. F., Urrego Caro, L. C. ., & Estupiñán Torres, S. M. (2025). Pseudomonas extremeustralis: a review of its properties and general characteristics. Revista Nova, 23(44), 183-201. https://doi.org/10.22490/24629448.99

Dimensions
PlumX
Citations
María Fernanda Bejarano Carrasquilla

    Laura Camila Urrego Caro

      Sandra Mónica Estupiñán Torres


        This study aims to synthesize and analyze the available information on
        Pseudomonas extremaustralis, a psychrotrophic bacterium isolated from Antarctica, known for its ability to adapt to extreme environmental conditions and its potential in bioremediation. A comprehensive literature review was conducted using the PRISMA method across databases such as ScienceDirect, Embase, PubMed, the National Library of Medicine (NLM), and Google Scholar. The inclusion criteria were original articles published after 2019 that mentioned the bacterium Pseudomonas
        extremaustralis.

        Pseudomonas extremaustralis exhibits remarkable metabolic flexibility, allowing it to thrive in environments with low temperatures and high concentrations of contaminants. Its ability to acquire genes through horizontal transfer grants it resistance to heavy metals and hydrocarbons, while its biofilm formation enhances the degradation of these compounds. Additionally, it synthesizes reserve polymers like polyhydroxyalkanoates (PHA), which are crucial for its survival in adverse environments.

        In conclusion, Pseudomonas extremaustralis is a highly adaptable and versatile microorganism with potential applications in the bioremediation of contaminated environments. Its capacity to degrade pollutants and withstand extreme conditions makes it a valuable tool for mitigating environmental contamination and an ideal model for studying microbial adaptation.


        Article visits 130 | PDF visits 79


        Downloads

        Download data is not yet available.
        1. Brito MG. Producción de polihidroxialcanoatos en Pseudomonas extremaustralis: análisis del metabolismo en distintas condiciones y su influencia en la adaptabilidad frente al estrés [Internet]. Buenos Aires: Universidad de Buenos Aires; 2023. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7426_Brito.pdf
        2. López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A, et al. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) producer isolated from an Antarctic environment. Curr Microbiol [Internet]. 2009;59(5):514–9. Disponible en: http://dx.doi.org/10.1007/s00284-009-9469-9
        3. Solar Venero EC, Matera G, Vogel J, López NI, Tribelli PM. Small RNAs in the Antarctic bacterium Pseudomonas extremaustralis responsive to oxygen availability and oxidative stress. Environ Microbiol Rep [Internet]. 2022. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35689330/
        4. Sawada H, Fujikawa T, Nishiwaki Y, Horita H. Pseudomonas kitaguniensis sp. nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Syst Evol Microbiol [Internet]. 2020;70(5):3018–26. Disponible en: http://dx.doi.org/10.1099/ijsem.0.004123
        5. Ballesteros Rojas Y. Identificación de factores asociados a promoción de crecimiento vegetal en Bacillus subtilis Atcc 6633 y Pseudomonas extremaustralis CMPUJ U515 en el modelo de fríjol [Internet]. Bogotá: Universidad Colegio Mayor de Cundinamarca; 2018. 84 p. Disponible en: https://repositorio.unicolmayor.edu.co/bitstream/handle/unicolmayor/3760/TRABAJO%20GRADO-YULI%20BALLESTEROS.pdf?sequence=1&isAllowed=y
        6. Yiseth FM. Identificación in silico de la capacidad de degradación de glifosato por Pseudomonas extremaustralis [Internet]. Bogotá: Universidad Antonio Nariño; 2023. Disponible en: http://repositorio.uan.edu.co/handle/123456789/9019
        7. Tribelli MP. Influencia del regulador global Anr en la fisiología de Pseudomonas extremaustralis, una bacteria productora de polihidroxibutirato [Internet]. Buenos Aires: Universidad de Buenos Aires; 2012. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5021_Tribelli.pdf
        8. Tribelli PM, Solar Venero EC, Ricardi MM, Gómez-Lozano M, Raiger Iustman LJ, Molin S, et al. Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One [Internet]. 2015;10(12):e0145353. Disponible en: http://dx.doi.org/10.1371/journal.pone.0145353
        9. Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Raiger Iustman LJ, et al. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol [Internet]. 2018. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29116430/
        10. Ayub ND, Pettinari MJ, Méndez BS, López NI. The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island. Plasmid [Internet]. 2007;58(3):240–8. Disponible en: http://dx.doi.org/10.1016/j.plasmid.2007.05.003
        11. Catone VM. Identificación y análisis de los genes asociados al metabolismo de polihidroxialcanoatos en Pseudomonas extremaustralis [Internet]. Buenos Aires: Universidad de Buenos Aires; 2013. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5288_Catone.pdf
        12. Hnatush S, Komplikevych S, Maslovska O, Moroz O, Peretyatko T, et al. Bacteria of the genus Pseudomonas isolated from Antarctic substrates. Ukr Antarct J [Internet]. 2021;(2):58–75. Disponible en: http://uaj.uac.gov.ua/index.php/uaj/article/view/678
        13. Dickinson I, Goodall-Copestake W, Thorne M, Schlitt T, Ávila-Jiménez M, Pearce D. Extremophiles in an antarctic marine ecosystem. Microorganisms [Internet]. 2016;4(1):8. Disponible en: https://www.mdpi.com/2076-2607/4/1/8
        14. López MAG, Zenteno-Rojas A, Martinez-Romero E, Rincón-Molina CI, Vences-Guzmán MA, Ruíz-Valdiviezo VM, et al. Biodegradation and bioaccumulation of decachlorobiphenyl (DCB) by native strain Pseudomonas extremaustralis ADA-5. Water Air Soil Pollut [Internet]. 2021;232(5). Disponible en: http://dx.doi.org/10.1007/s11270-021-05122-2
        15. Rodriguez Mirque Y. Estudio de la cepa de Pseudomonas extremaustralis CMPUJ U515 como promotora de crecimiento en plantas de tomate [Internet]. Bogotá: Universidad Colegio Mayor de Cundinamarca; 2019. 65 p. Disponible en: https://repositorio.unicolmayor.edu.co/handle/unicolmayor/267
        16. Thomassen GMB, Reiche T, Tennfjord CE, Mehli L. Antibiotic resistance properties among Pseudomonas spp. associated with salmon processing environments. Microorganisms [Internet]. 2022;10(7):1420. Disponible en: https://www.mdpi.com/2076-2607/10/7/1420
        17. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev [Internet]. 2011;35(4):652–80. Disponible en: http://dx.doi.org/10.1111/j.1574-6976.2011.00269.x
        18. Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S, et al. Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant. Stress Biol [Internet]. 2024. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38273092/
        19. Colonnella MA, Lizarraga L, Rossi L, Díaz Peña R, Egoburo D, López NI, et al. Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles [Internet]. 2019. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30328541/
        20. Giambartolomei L. Análisis de estrategias involucradas con la adaptabilidad al frío y microaerobiosis en Pseudomonas extremaustralis [Internet]. Buenos Aires: Universidad de Buenos Aires; 2023. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/seminario/seminario_nBIO001646_Giambartolomei.pd
        21. Farkas R, Toumi M, Abbaszade G, Bóka K, Takáts K, Tóth E. The acute impact of arsenic as(III) on the prokaryotic community composition and selected bacterial strains based on microcosm experiments. Geomicrobiol J [Internet]. 2023;40(5):413–26. Disponible en: http://dx.doi.org/10.1080/01490451.2023.2181469
        22. Venero ECS. Mecanismos de adaptabilidad a microaerobiosis y estrés oxidativo en Pseudomonas extremaustralis [Internet]. Buenos Aires: Universidad de Buenos Aires; 2020. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7438_SolarVenero.pdf
        23. Finore I, Vigneron A, Vincent WF, Leone L, Di Donato P, Schiano Moriello A, et al. Novel psychrophiles and exopolymers from permafrost thaw lake sediments. Microorganisms [Internet]. 2020;8(9):1282. Disponible en: https://www.mdpi.com/2076-2607/8/9/1282
        24. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas cyclaminis sp. nov., a pathogen causing bacterial bud blight of cyclamen in Japan. Int J Syst Evol Microbiol [Internet]. 2019;71(3). Disponible en: http://dx.doi.org/10.1099/ijsem.0.004723
        25. Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas petroselini sp. nov., a pathogen causing bacterial rot of parsley in Japan. Int J Syst Evol Microbiol [Internet]. 2022;72(6). Disponible en: http://dx.doi.org/10.1099/ijsem.0.005424
        26. Vargas-Ordóñez A, Aguilar-Romero I, Villaverde J, Madrid F, Morillo E. Isolation of novel bacterial strains Pseudomonas extremaustralis CSW01 and stutzerimonas stutzeri CSW02 from sewage sludge for paracetamol biodegradation. Microorganisms [Internet]. 2023. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36677487/
        27. López G, Diaz-Cárdenas C, Shapiro N, Woyke T, Kyrpides NC, David Alzate J, et al. Draft genome sequence of Pseudomonas extremaustralis strain USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand Genomic Sci [Internet]. 2017. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29255573/
        28. Raiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC, López NI. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles [Internet]. 2015. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25316211/
        29. Tribelli PM, Méndez BS, López NI. Oxygen-sensitive global regulator, anr, is involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas extremaustralis. Microb Physiol [Internet]. 2010;19(4):180–8. Disponible en: https://karger.com/mmb/article-abstract/19/4/180/197135/Oxygen-Sensitive-Global-Regulator-Anr-Is-Involved?redirectedFrom=fulltext
        30. Tribelli PM, Nikel PI, Oppezzo OJ, López NI. Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. Microbiology [Internet]. 2013;159(Pt_2):259–68. Disponible en: http://dx.doi.org/10.1099/mic.0.061085-0
        31. Solar Venero EC, Ricardi MM, Gomez-Lozano M, Molin S, Tribelli PM, López NI. Oxidative stress under low oxygen conditions triggers hyperflagellation and motility in the Antarctic bacterium Pseudomonas extremaustralis. Extremophiles [Internet]. 2019;23(5):587–97. Disponible en: http://dx.doi.org/10.1007/s00792-019-01110-x
        32. Ramzi AB, Matthew Minggu M, Ruslan US, Mohamad Hazwan FK, Mohamed Abdul P. Expression of furfural reductase improved furfural tolerance in Antarctic bacterium Pseudomonas extremaustralis. Sains Malays [Internet]. 2022;51(10):3163–70. Disponible en: http://www.ukm.my/jsm/pdf_files/SM-PDF-51-10-2022/4.pdf
        33. Nikovaev YA, Borzenkov IA, Demkina EV, Loiko NG, Kanapatskii TA, Perminova IV, et al. New biocomposite materials based on hydrocarbon-oxidizing microorganisms and their potential for oil products degradation. Microbiology [Internet]. 2021;90(6):731–42. Disponible en: http://dx.doi.org/10.1134/s0026261721060114
        34. Ayub ND, Pettinari MJ, Ruiz JA, López NI. A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr Microbiol [Internet]. 2004;49(3). Disponible en: http://dx.doi.org/10.1007/s00284-004-4254-2
        35. Tribelli PM, López NI. Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions. Extremophiles [Internet]. 2011;15(5):541–7. Disponible en: http://dx.doi.org/10.1007/s00792-011-0384-1
        36. Salwoom L, Raja Abd Rahman R, Salleh A, Mohd. Shariff F, Convey P, Pearce D, et al. Isolation, characterisation, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island, Antártica. Molecules [Internet]. 2019;24(4):715. Disponible en: https://www.mdpi.com/1420-3049/24/4/715
        37. Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles [Internet]. 2009;13(1):59–66. Disponible en: http://dx.doi.org/10.1007/s00792-008-0197-z
        38. Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PLoS One [Internet]. 2014;9(6):e98873. Disponible en: http://dx.doi.org/10.1371/journal.pone.0098873
        39. Tribelli PM, Raiger Iustman LJ, Catone MV, Di Martino C, Revale S, Méndez BS, et al. Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium. J Bacteriol [Internet]. 2012;194(9):2381–2. Disponible en: http://dx.doi.org/10.1128/JB.00172-12
        40. Song Q, Deng X, Song R, Song X. Plant growth-promoting rhizobacteria promote growth of seedlings, regulate soil microbial community, and alleviate damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var. mongolica. Plant Dis [Internet]. 2022;106(10):2730–40. Disponible en: http://dx.doi.org/10.1094/pdis-11-21-2562-re
        41. Jiao H, Wang R, Qin W, Yang J. Screening of rhizosphere nitrogen fixing, phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.) Roem. and the effect on apple growth. J Plant Physiol [Internet]. 2024;292(154142):154142. Disponible en: http://dx.doi.org/10.1016/j.jplph.2023.154142
        42. Vetrova AA, Trofimov SY, Kinzhaev RR, Avetov NA, Arzamazova AV, Puntus IF, et al. Development of microbial consortium for bioremediation of oil-contaminated soils in the middle ob region. Eurasian Soil Sci [Internet]. 2022;55(5):651–62. Disponible en: http://dx.doi.org/10.1134/s1064229322050106
        43. Kim J, Fuller ME, Hatzinger PB, Chu K-H. Draft genomes of three nitroguanidine-degrading bacteria: Pseudomonas extremaustralis NQ5, Arthrobacter strain NQ4, and Arthrobacter strain NQ7. Microbiol Resour Announc [Internet]. 2023. Disponible en: https://pubmed.ncbi.nlm.nih.gov/37477431/
        44. Tribelli PM, Pezzoni M, Brito MG, Montesinos NV, Costa CS, López NI. Response to lethal UVA radiation in the Antarctic bacterium Pseudomonas extremaustralis: polyhydroxybutyrate and cold adaptation as protective factors. Extremophiles [Internet]. 2020;24(2):265–75. Disponible en: http://dx.doi.org/10.1007/s00792-019-01152-1
        45. Tribelli PM, Hay AG, López NI. The global anaerobic regulator anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One [Internet]. 2013;8(10):e76685. Disponible en: http://dx.doi.org/10.1371/journal.pone.0076685
        46. Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol [Internet]. 2023;14:1218708. Disponible en: http://dx.doi.org/10.3389/fmicb.2023.1218708
        47. Tribelli PM, Di Martino C, López NI, Raiger Iustman LJ. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation [Internet]. 2012;23(5):645–51. Disponible en: http://dx.doi.org/10.1007/s10532-012-9540-2
        48. Hu Y-Q, Zeng Y-X, Du Y, Zhao W, Li H-R, Han W, et al. Comparative genomic analysis of two Arctic Pseudomonas strains reveals insights into the aerobic denitrification in cold environments. BMC Genomics [Internet]. 2023;24(1). Disponible en: http://dx.doi.org/10.1186/s12864-023-09638-1
        49. Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L, López NI, et al. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One [Internet]. 2018;13(2):e0192559. Disponible en: http://dx.doi.org/10.1371/journal.pone.0192559
        50. Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem [Internet]. 2007;282(49):35546–53. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17938167/
        51. Kim J, Fuller ME, Hatzinger PB, Chu K-H. Isolation and characterization of nitroguanidine-degrading microorganisms. Sci Total Environ [Internet]. 2024;912(169184):169184. Disponible en: http://dx.doi.org/10.1016/j.scitotenv.2023.169184
        52. Ji B, Zhang X, Zhang S, Song H, Kong Z. Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing. J Biosci Bioeng [Internet]. 2019;128(6):744–50. Disponible en: http://dx.doi.org/10.1016/j.jbiosc.2019.06.007
        53. Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Marshall SH, Olivares-Pacheco J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Braz J Microbiol [Internet]. 2018;49(4):695–702. Disponible en: http://dx.doi.org/10.1016/j.bjm.2018.02.005
        54. Nie M, Wu C, Tang Y, Shi G, Wang X, Hu C, et al. Selenium and Bacillus proteolyticus SES synergistically enhanced ryegrass to remediate Cu–Cd–Cr contaminated soil. Environ Pollut [Internet]. 2023;323(121272):121272. Disponible en: http://dx.doi.org/10.1016/j.envpol.2023.121272
        55. Gómez-Lozano M, Marvig RL, Molina-Santiago C, Tribelli PM, Ramos J-L, Molin S. Diversity of small RNAs expressed in Pseudomonas species. Environ Microbiol Rep [Internet]. 2015;7(2):227–36. Disponible en: http://dx.doi.org/10.1111/1758-2229.12233
        56. Nikolaev Y, Borzenkov I, Demkina E, Loiko N, Kanapatsky T, Perminova I, et al. Immobilization of cells of hydrocarbon-oxidizing bacteria for petroleum bioremediation using new materials. Int J Environ Res [Internet]. 2021;15(6):971–84. Disponible en: http://dx.doi.org/10.1007/s41742-021-00367-5
        57. Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of Pseudomonas for bioremediation of oxyanions. Environ Microbiol Rep [Internet]. 2021;13(6):773–89. Disponible en: http://dx.doi.org/10.1111/1758-2229.12999
        58. Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of hydrocarbons and phenolic compounds - key catabolic degradation enzymes and new analytical platforms for comprehensive investigation. World J Microbiol Biotechnol [Internet]. 2022;38(10). Disponible en: http://dx.doi.org/10.1007/s11274-022-03349-7
        59. Rache-Arce DC, Machacado-Salas M, Rosero-García D. Hydrocarbon-degrading bacteria in Colombia: systematic review. Biodegradation [Internet]. 2022;33(2):99–116. Disponible en: http://dx.doi.org/10.1007/s10532-022-09976-z
        60. Lorenzo V. Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agents. Philos Trans R Soc Lond B Biol Sci [Internet]. 2022;377(1857). Disponible en: http://dx.doi.org/10.1098/rstb.2021.0395
        61. Hassen W, Cherif H, Werhani R, Raddadi N, Neifar M, Hassen A, et al. Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas species as detoxification agents. Arch Microbiol [Internet]. 2021;203(7):4641–51. Disponible en: http://dx.doi.org/10.1007/s00203-021-02451-y
        62. Ghorbannezhad H, Moghimi H, Dastgheib SMM. Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Sci Rep [Internet]. 2022;12(1). Disponible en: http://dx.doi.org/10.1038/s41598-022-17001-9
        Sistema OJS 3.4.0.5 - Metabiblioteca |