Skip to main navigation menu Skip to main content Skip to site footer

Determination of Azadirachta indica extract-induced genetic damage in human lymphocytes

Determinación del daño genético inducido por extracto de Azadirachta indica en linfocitos humanos




Section
Artículo Original

How to Cite
Vega Contreras, N. A., ., ., & ., . (2025). Determination of Azadirachta indica extract-induced genetic damage in human lymphocytes. Revista Nova, 24(45), 27-39. https://doi.org/10.22490/

Dimensions
PlumX
Citations

Currently, compounds of natural origin are considered as an alternative for pest control. A study was carried out for a biopesticide based on Neem seed as raw material (Azadirachta indica), evaluating the genotoxic effect on human lymphocytes to mitigate health risks for farmers. Azadirachta indica extraction was carried out by Soxhlet method and treatments were prepared at different concentrations (C1: 0.001 mM, C2: 0.0015 mM, C3: 0.002 mM).  Hydrogen peroxide was used as positive control and phosphate buffer (PBS) as negative control. Lymphocytes were obtained from the peripheral blood sample of a healthy 25-year-old individual. Subsequently, alkaline single-cell gel electrophoresis (SCGE) or Comet Test Assay was performed with the sandwich technique for cell protection and fixation. Samples were stained with Gelred for observation with 40x objective with Optika Italy B-510 series microscope and images were captured and evaluated in Comet ScoreTM software. The %DNA of the tail was the parameter taken into account for the measurement, obtaining as a result a higher damage or degradation in treatments C2 and C3, concluding that the concentration of Azadirachta indica is directly proportional to the damage of human lymphocytes.

 


Article visits 18 | PDF visits 17


Downloads

Download data is not yet available.
  1. Salazar SA, Quintero Caleño JD. Determination of malathion’s toxic effect on Lens culinaris Medik cell cycle. Medik cell cycle Heliyon. 2020;6(9). https://doi.org/10.1016/j.heliyon.2020.e04846
  2. Salazar S, Caleño J. Use of Lens culinaris Med test as environmental bioindicator to identify the cytogenotoxic effect of paraquat pesticide. Environmental science and pollution research international. 2021;28:51321–8. https://doi.org/10.1007/s11356-021-14352-0
  3. Sharma S, Malik P. Biopesticides: Types and applications. International Journal of Advances in Pharmacy. 2012;1(4):508-15. https://portal.issn.org/resource/ISSN/2277-4688
  4. Hernández J, Torrentes M. Elaboration of an extract with bioinsecticide function from the seeds of the neem tree (Azadirachta indica A. Juss) to combat the whitefly pest. Managua; 2020. https://repositorio.unan.edu.ni/14573/1/14573.pdf
  5. Azwanida NN. A review on the use of extraction methods in medicinal plants, principle, strength and limitation.. Med Aromat Plants. 196d. C.;4:2167–0412. https://doi.org/10.3233/CH-131716.
  6. Kumar Vs Y Navaratnam V. Neem (Azadirachta indica): from prehistory to contemporary medicinal uses for mankind. Asian Pacific journal of tropical biomedicine. 2013;3(7):505–14. https://doi.org/10.1016/S2221-1691(13)60105-7
  7. Esparza-Díaz G. Azadirachtin concentration, insecticidal effectiveness and phytotoxicity of four extracts of Azadirachta indica A. Juss. Agrociencia. 2010;44:821–33. https://www.scielo.org.mx/pdf/agro/v44n7/v44n7a8.pdf
  8. Vega-Contreras N, Alfonso, Villada-Castillo D, Clemencia, Pabon-Mora C. Evaluation of attalea butyracea oil as an alternative in obtaining biodiesel. Engineering and competitiveness. 2023;25. https://doi.org/10.25100/iyc.v25i1.12208
  9. Melgarejo P, Romagosa I, Duran N. Agricultural biotechnology. Arbor https://doi.org/10.3989/arbor.2014.768n4006
  10. Corona MDCC. History of Biotechnology and its applications. siladin, editor. 2011. http://siladin. cch.
  11. Zhang W, Jiang F, Ou J. Global pesticide consumption and pollution: with China as the focus. Proceedings of the international academy of ecology and environmental sciences. 2011;1. http://www.iaees.org/publications/journals/piaees/articles/2011-1(2)/Global-pesticide-consumption-pollution.pdf
  12. Salazar S, Maldonado H. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol Environ Saf. 2019; 183.n . https://doi.org/10.1016/j.ecoenv.2019.109528
  13. Salazar S, Quintero J, Rojas J. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere. 2020;249. https://doi.org/10.1016/j.chemosphere.2020.126193
  14. Salazar S, Correa RDC. Examining the interaction between pesticides and bioindicator plants: an in-depth analysis of their cytotoxicity. Environmental Science And Pollution Research. 2024; https://doi.org/10.1007/s11356-024-34521-1
  15. Guanggang X, Diqiu L, Jianzhong Y, Jingmin G, Huifeng Z, Mingan S, et al. The insecticide carbamate methomyl confers cytotoxicity through induction of DNA damage. Food and Chemical Toxicology. 2013;53:352–8. https://doi.org/10.1016/j.fct.2012.12.020
  16. Bolognesi C, Peluso M, Degan P, Rabboni R, Munnia A, Abbondandolo A. Genotoxic effects of the insecticide methomyl carbamate. II. In vivo studies with the pure compound and the technical formulation “Lannate 25”. Environmental and molecular mutagenesis. 1994;24:235–42. https://doi.org/10.1002/em.2850240313
  17. Genotoxicity study of aldicarb and methomyl. Huan jing ke xue = Huanjing kexue. 31(12):2973–80. https://europepmc.org/article/med/21360888
  18. Dodge BI. Characterization of gangliosides in human CD8+ T lymphocytes.. 2023. http://riaa.uaem.mx/handle/20.500.12055/3219
  19. Yañez LF, Quijano Parra A, Meléndez Gélvez I. Genotoxicity in human lymphocytes induced by extracts of peach, Prunus persica grown in pamplonita Norte de Santander. Science and Development https://doi.org/10.19053/01217488.v8.n1.2017.6221
  20. Gómez-Arroyo S, Martínez-Valenzuela C, Carbajal-López Y, Martínez-Arroyo A, Calderón-Segura ME, Villalobos-Pietrini R, et al. Genotoxic risk from occupational exposure to pesticides in Latin America. International journal of environmental pollution. 2013;29:159–80.
  21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/42197
  22. Ordoñez-Beltrán V, Parra-Acosta H, Frías-Moreno MN, Martínez-Tapia ME. Study on the use of pesticides and their possible relationship with health damage. Journal of toxicology. 2019;36(2):148–53. https://dialnet.unirioja.es/servlet/articulo?codigo=7180172
  23. Chirinos D, Castro R, Cun J, Castro J, Peñarrieta Bravo S, Solis L, et al. Insecticides and agricultural pest control: the extent of their use on crops in some provinces of Ecuador. Agricultural Science and Technology. 2020;21(1):84–99. https://doi.org/10.21930/rcta.vol21
  24. Rodríguez-Rey A, Noris-García E, Torres MT. Principles and relevance of the comet assay. Cuban Journal of Biomedical Research.. 2016;35(2):184–94. https://www.medigraphic.com/pdfs/revcubinvbio/cib-2016/cib162g.pdf
  25. Gonzalez Nuñez AA, Ossana N. Genotoxic evaluation by Comet assay in C. decemmaculatus. International Congress of Science and Technology. 2016;3.https://digital.cic.gba.gob.ar/handle/11746/4817
  26. Larrea AA, Mieczkowski PA, Resnick MA, Da Y Kunkel TA. A genome-wide model for the normal eukaryotic DNA replication fork. Proceedings of the National Academy of Sciences. 2010;107(41):17674–9. https://doi.org/10.1073/pnas.1010178107
  27. Vega Contreras NA, Torres Salazar ML. Evaluation Of Phenolic Compounds From (Citrus sinensis) And Their Antioxidant Capacity. Science and Development https://doi.org/10.19053/01217488.v12.n2.2021.11635
  28. Cristina STL. Determination of the absence of DNA damage in human lymphocytes by the “tilapia” type I collagen comet assay. national council for science, technology and technological innovation, publisher. 2021. http://hdl.handle.net/20.500.12390/3159
  29. Spengler MI, Svetaz MJ, Leroux MB, Bertoluzzo SM, Parente FM, Bosch P. Lipid peroxidation affects red blood cells membrane properties in patients with systemic lupus erythematosus. Clin Hemorheol Microcirc DOI: 10.3233/CH-131716
  30. Mora Tassé Y, Fong Lores O, Berenguer Rivas CA, Pérez Andrés IY. Human erythrocytes as a pharmacological biomodel of antioxidant cytoprotection for the evaluation of new therapeutic alternatives in patients with COVID-19. Medisan. 2022;26(5). https://search.bvsalud.org/gim/resource/en/biblio-1405841
  31. Sotil G, Alvis R, Francia JC, Shiga B. Application of two biomarkers for the analysis of DNA lesions in marine bivalves. Rev Peru Biol 2006;13(3):249–53. http://dx.doi.org/10.15381/rpb.v13i3.2350
  32. Soler W, Velásquez N, Soler J. Low genotoxicity of organic seawater extract from Coveñas (Sucre, Colombia). Vitae, Journal of the Faculty of. Pharmaceutical Chemistry. 2008;15(1):96–102. https://www.redalyc.org/articulo.oa?idp=1&id=169815394011&cid=31002
  33. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175(1):184–91. http://dx.doi.org/10.1016/0014-4827(88)90265-0
  34. Amésquita L, Cruz-Briceño MN, Prieto Z. DNA damage in human lymphocytes by the effect of chloroquine. Rev Peru Med Exp Public Health. 2018;35(3):471–5. http://dx.doi.org/10.17843/rpmesp.2018.353.3166
  35. Venegas Z. Methodological optimizations of the comet assay and its application in human biomonitoring. 2009. https://ddd.uab.cat/record/64777
  36. Castillo R. Quantification of DNA damage by the comet test in human lymphocytes exposed to ethanolic extract of leucaena trichodes.. 2012. https://repositorioslatinoamericanos.uchile.cl/handle/2250/1425415
  37. Torres F. Genotoxicity of glyphosate herbicide assessed by comet assay and micronucleus formation in treated mice. Theoria. 2006;15(2):53–60. https://www.redalyc.org/articulo.oa?id=29915206
  38. Meléndez Gélvez I, Martínez Montañez ML, Qujano Parra A. Mutagenic and genotoxic activity in the particulate matter respirable fraction PM2.5 in Pamplona, Norte de Santander, Colombia. IATREIA 2012;25(4):347–56. http://dx.doi.org/10.17533/udea.iatreia.13131
  39. Idris SB. Cytotoxicity of clopyrifos and cypermethrin: Antioxidant-enhancing effects. African Journal of Biotechnology. 2012;11(99):16461–7. DOI: 10.5897/AJB12.2675
  40. Arias M. What does the p-value really mean? Pediatrics Primary Care. 2017;19:377–81. https://archivos.pap.es/files/1116-2364-pdf/12_Valor_p.pdf
  41. Espinosa C. Evaluation of the genotoxic and mutagenic effect in human lymphocytes exposed to modified carbon nanotubes. Dyna. 2018;85.DOI:10.15446/dyna.v85n205.68767
  42. Vales G, Rubio L, Marcos R. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures. J Hazard Mater. http://dx.doi.org/10.1016/j.jhazmat.2015.12.021
Sistema OJS 3.4.0.5 - Metabiblioteca |