Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Determinación del daño genético inducido por extracto de Azadirachta indica en linfocitos humanos

Determination of Azadirachta indica extract-induced genetic damage in human lymphocytes



Abrir | Descargar


Sección
Artículo Original

Cómo citar
Vega Contreras, N. A., Meza Ojeda, J. C. ., & Salazar mercado, S. A. . (2025). Determinación del daño genético inducido por extracto de Azadirachta indica en linfocitos humanos. Revista Nova, 24(45), 27-39. https://doi.org/10.22490/

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Nelson Alfonso Vega Contreras

    Jhossleiny Cristina Meza Ojeda

      Seir Antonio Salazar mercado


        Jhossleiny Cristina Meza Ojeda,

        .


        Seir Antonio Salazar mercado,

        .


        Objetivo. Evaluar el efecto genotóxico de un biopesticida elaborado a partir de semillas de Neem (Azadirachta indica) sobre linfocitos humanos, con el propósito de mitigar los posibles riesgos a la salud de los agricultores. Métodos. La extracción del principio activo de Azadirachta indica se realizó mediante el método Soxhlet, y se prepararon tres concentraciones de tratamiento: C1 (0.001 mM), C2 (0.0015 mM) y C3 (0.002 mM). Se utilizó peróxido de hidrógeno como control positivo y tampón fosfato (PBS) como control negativo. Los linfocitos se obtuvieron de una muestra de sangre periférica autóloga, proveniente de un individuo sano de 25 años. Posteriormente, se aplicó el ensayo Cometa (SCGE) en condiciones alcalinas, utilizando la técnica de sándwich para la protección y fijación celular. Las muestras fueron teñidas con GelRed y observadas con un microscopio Optika
        Italy B-510, con objetivo de 40x. Las imágenes fueron capturadas y analizadas mediante el software Comet Score™. Se empleó como parámetro de medición el porcentaje de ADN en la cola del cometa (%ADN en cola). Resultados. Los tratamientos C2 y C3 presentaron un mayor porcentaje de ADN en cola en comparación con C1 y el control negativo, evidenciando un aumento en el daño genético proporcional a la concentración del extracto. Conclusiones. La genotoxicidad inducida por el extracto de Azadirachta indica mostró una relación directamente proporcional con su concentración, lo que sugiere que, aunque se trata de un biopesticida de origen natural, su uso debe considerar cuidadosamente las dosis para evitar efectos adversos en la salud humana.


        Visitas del artículo 17 | Visitas PDF 16


        Descargas

        Los datos de descarga todavía no están disponibles.
        1. Salazar SA, Quintero Caleño JD. Determination of malathion’s toxic effect on Lens culinaris Medik cell cycle. Medik cell cycle Heliyon. 2020;6(9). https://doi.org/10.1016/j.heliyon.2020.e04846
        2. Salazar S, Caleño J. Use of Lens culinaris Med test as environmental bioindicator to identify the cytogenotoxic effect of paraquat pesticide. Environmental science and pollution research international. 2021;28:51321–8. https://doi.org/10.1007/s11356-021-14352-0
        3. Sharma S, Malik P. Biopesticides: Types and applications. International Journal of Advances in Pharmacy. 2012;1(4):508-15. https://portal.issn.org/resource/ISSN/2277-4688
        4. Hernández J, Torrentes M. Elaboration of an extract with bioinsecticide function from the seeds of the neem tree (Azadirachta indica A. Juss) to combat the whitefly pest. Managua; 2020. https://repositorio.unan.edu.ni/14573/1/14573.pdf
        5. Azwanida NN. A review on the use of extraction methods in medicinal plants, principle, strength and limitation.. Med Aromat Plants. 196d. C.;4:2167–0412. https://doi.org/10.3233/CH-131716.
        6. Kumar Vs Y Navaratnam V. Neem (Azadirachta indica): from prehistory to contemporary medicinal uses for mankind. Asian Pacific journal of tropical biomedicine. 2013;3(7):505–14. https://doi.org/10.1016/S2221-1691(13)60105-7
        7. Esparza-Díaz G. Azadirachtin concentration, insecticidal effectiveness and phytotoxicity of four extracts of Azadirachta indica A. Juss. Agrociencia. 2010;44:821–33. https://www.scielo.org.mx/pdf/agro/v44n7/v44n7a8.pdf
        8. Vega-Contreras N, Alfonso, Villada-Castillo D, Clemencia, Pabon-Mora C. Evaluation of attalea butyracea oil as an alternative in obtaining biodiesel. Engineering and competitiveness. 2023;25. https://doi.org/10.25100/iyc.v25i1.12208
        9. Melgarejo P, Romagosa I, Duran N. Agricultural biotechnology. Arbor https://doi.org/10.3989/arbor.2014.768n4006
        10. Corona MDCC. History of Biotechnology and its applications. siladin, editor. 2011. http://siladin. cch.
        11. Zhang W, Jiang F, Ou J. Global pesticide consumption and pollution: with China as the focus. Proceedings of the international academy of ecology and environmental sciences. 2011;1. http://www.iaees.org/publications/journals/piaees/articles/2011-1(2)/Global-pesticide-consumption-pollution.pdf
        12. Salazar S, Maldonado H. Evaluation of cytotoxic potential of chlorpyrifos using Lens culinaris Med as efficient bioindicator. Ecotoxicol Environ Saf. 2019; 183.n . https://doi.org/10.1016/j.ecoenv.2019.109528
        13. Salazar S, Quintero J, Rojas J. Cytogenotoxic effect of propanil using the Lens culinaris Med and Allium cepa L test. Chemosphere. 2020;249. https://doi.org/10.1016/j.chemosphere.2020.126193
        14. Salazar S, Correa RDC. Examining the interaction between pesticides and bioindicator plants: an in-depth analysis of their cytotoxicity. Environmental Science And Pollution Research. 2024; https://doi.org/10.1007/s11356-024-34521-1
        15. Guanggang X, Diqiu L, Jianzhong Y, Jingmin G, Huifeng Z, Mingan S, et al. The insecticide carbamate methomyl confers cytotoxicity through induction of DNA damage. Food and Chemical Toxicology. 2013;53:352–8. https://doi.org/10.1016/j.fct.2012.12.020
        16. Bolognesi C, Peluso M, Degan P, Rabboni R, Munnia A, Abbondandolo A. Genotoxic effects of the insecticide methomyl carbamate. II. In vivo studies with the pure compound and the technical formulation “Lannate 25”. Environmental and molecular mutagenesis. 1994;24:235–42. https://doi.org/10.1002/em.2850240313
        17. Genotoxicity study of aldicarb and methomyl. Huan jing ke xue = Huanjing kexue. 31(12):2973–80. https://europepmc.org/article/med/21360888
        18. Dodge BI. Characterization of gangliosides in human CD8+ T lymphocytes.. 2023. http://riaa.uaem.mx/handle/20.500.12055/3219
        19. Yañez LF, Quijano Parra A, Meléndez Gélvez I. Genotoxicity in human lymphocytes induced by extracts of peach, Prunus persica grown in pamplonita Norte de Santander. Science and Development https://doi.org/10.19053/01217488.v8.n1.2017.6221
        20. Gómez-Arroyo S, Martínez-Valenzuela C, Carbajal-López Y, Martínez-Arroyo A, Calderón-Segura ME, Villalobos-Pietrini R, et al. Genotoxic risk from occupational exposure to pesticides in Latin America. International journal of environmental pollution. 2013;29:159–80.
        21. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/42197
        22. Ordoñez-Beltrán V, Parra-Acosta H, Frías-Moreno MN, Martínez-Tapia ME. Study on the use of pesticides and their possible relationship with health damage. Journal of toxicology. 2019;36(2):148–53. https://dialnet.unirioja.es/servlet/articulo?codigo=7180172
        23. Chirinos D, Castro R, Cun J, Castro J, Peñarrieta Bravo S, Solis L, et al. Insecticides and agricultural pest control: the extent of their use on crops in some provinces of Ecuador. Agricultural Science and Technology. 2020;21(1):84–99. https://doi.org/10.21930/rcta.vol21
        24. Rodríguez-Rey A, Noris-García E, Torres MT. Principles and relevance of the comet assay. Cuban Journal of Biomedical Research.. 2016;35(2):184–94. https://www.medigraphic.com/pdfs/revcubinvbio/cib-2016/cib162g.pdf
        25. Gonzalez Nuñez AA, Ossana N. Genotoxic evaluation by Comet assay in C. decemmaculatus. International Congress of Science and Technology. 2016;3.https://digital.cic.gba.gob.ar/handle/11746/4817
        26. Larrea AA, Mieczkowski PA, Resnick MA, Da Y Kunkel TA. A genome-wide model for the normal eukaryotic DNA replication fork. Proceedings of the National Academy of Sciences. 2010;107(41):17674–9. https://doi.org/10.1073/pnas.1010178107
        27. Vega Contreras NA, Torres Salazar ML. Evaluation Of Phenolic Compounds From (Citrus sinensis) And Their Antioxidant Capacity. Science and Development https://doi.org/10.19053/01217488.v12.n2.2021.11635
        28. Cristina STL. Determination of the absence of DNA damage in human lymphocytes by the “tilapia” type I collagen comet assay. national council for science, technology and technological innovation, publisher. 2021. http://hdl.handle.net/20.500.12390/3159
        29. Spengler MI, Svetaz MJ, Leroux MB, Bertoluzzo SM, Parente FM, Bosch P. Lipid peroxidation affects red blood cells membrane properties in patients with systemic lupus erythematosus. Clin Hemorheol Microcirc DOI: 10.3233/CH-131716
        30. Mora Tassé Y, Fong Lores O, Berenguer Rivas CA, Pérez Andrés IY. Human erythrocytes as a pharmacological biomodel of antioxidant cytoprotection for the evaluation of new therapeutic alternatives in patients with COVID-19. Medisan. 2022;26(5). https://search.bvsalud.org/gim/resource/en/biblio-1405841
        31. Sotil G, Alvis R, Francia JC, Shiga B. Application of two biomarkers for the analysis of DNA lesions in marine bivalves. Rev Peru Biol 2006;13(3):249–53. http://dx.doi.org/10.15381/rpb.v13i3.2350
        32. Soler W, Velásquez N, Soler J. Low genotoxicity of organic seawater extract from Coveñas (Sucre, Colombia). Vitae, Journal of the Faculty of. Pharmaceutical Chemistry. 2008;15(1):96–102. https://www.redalyc.org/articulo.oa?idp=1&id=169815394011&cid=31002
        33. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175(1):184–91. http://dx.doi.org/10.1016/0014-4827(88)90265-0
        34. Amésquita L, Cruz-Briceño MN, Prieto Z. DNA damage in human lymphocytes by the effect of chloroquine. Rev Peru Med Exp Public Health. 2018;35(3):471–5. http://dx.doi.org/10.17843/rpmesp.2018.353.3166
        35. Venegas Z. Methodological optimizations of the comet assay and its application in human biomonitoring. 2009. https://ddd.uab.cat/record/64777
        36. Castillo R. Quantification of DNA damage by the comet test in human lymphocytes exposed to ethanolic extract of leucaena trichodes.. 2012. https://repositorioslatinoamericanos.uchile.cl/handle/2250/1425415
        37. Torres F. Genotoxicity of glyphosate herbicide assessed by comet assay and micronucleus formation in treated mice. Theoria. 2006;15(2):53–60. https://www.redalyc.org/articulo.oa?id=29915206
        38. Meléndez Gélvez I, Martínez Montañez ML, Qujano Parra A. Mutagenic and genotoxic activity in the particulate matter respirable fraction PM2.5 in Pamplona, Norte de Santander, Colombia. IATREIA 2012;25(4):347–56. http://dx.doi.org/10.17533/udea.iatreia.13131
        39. Idris SB. Cytotoxicity of clopyrifos and cypermethrin: Antioxidant-enhancing effects. African Journal of Biotechnology. 2012;11(99):16461–7. DOI: 10.5897/AJB12.2675
        40. Arias M. What does the p-value really mean? Pediatrics Primary Care. 2017;19:377–81. https://archivos.pap.es/files/1116-2364-pdf/12_Valor_p.pdf
        41. Espinosa C. Evaluation of the genotoxic and mutagenic effect in human lymphocytes exposed to modified carbon nanotubes. Dyna. 2018;85.DOI:10.15446/dyna.v85n205.68767
        42. Vales G, Rubio L, Marcos R. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures. J Hazard Mater. http://dx.doi.org/10.1016/j.jhazmat.2015.12.021
        Sistema OJS 3.4.0.5 - Metabiblioteca |