Pseudomonas extremaustralis: una revisión de sus propiedades y características generales
Pseudomonas extremeustralis: a review of its properties and general characteristics

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Mostrar biografía de los autores
Este estudio tiene como objetivo sintetizar y analizar la información disponible sobre Pseudomonas extremaustralis, una bacteria psicrotrófica aislada de la Antártida, conocida por su capacidad para adaptarse a condiciones ambientales extremas y su potencial en la biorremediación. Se realizó una revisión exhaustiva de la literatura utilizando el método PRISMA en bases de datos como ScienceDirect, Embase, PubMed, la Biblioteca Nacional de Medicina (NLM) y Google Scholar. Los criterios
de inclusión fueron artículos originales publicados después de 2019 que
mencionaran a la bacteria Pseudomonas extremaustralis.
Pseudomonas extremaustralis exhibe una notable flexibilidad metabólica, lo que le permite prosperar en ambientes con bajas temperaturas y altas concentraciones de contaminantes. Su capacidad para adquirir genes a través de la transferencia horizontal le otorga resistencia a metales pesados e hidrocarburos, mientras que su formación de biopelículas mejora la degradación de estos compuestos. Además, sintetiza polímeros de reserva como los polihidroxialcanoatos (PHA), que son cruciales para su supervivencia en entornos adversos.
En conclusión, Pseudomonas extremaustralis es un microorganismo altamente adaptable y versátil con aplicaciones potenciales en la biorremediación de ambientes contaminados. Su capacidad para degradar contaminantes y soportar condiciones extremas la convierte en una herramienta valiosa para mitigar la contaminación ambiental y en un modelo ideal para estudiar la adaptación microbiana.
Visitas del artículo 70 | Visitas PDF 49
Descargas
- Brito MG. Producción de polihidroxialcanoatos en Pseudomonas
- extremaustralis: análisis del metabolismo en distintas condiciones y su
- influencia en la adaptabilidad frente al estrés [Internet]. [Buenos Aires,
- Argentina]: Universidad de Buenos Aires ; 2023. Disponible en:
- https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7426_Brito.pdf
- López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A,
- et al. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate)
- Producer Isolated from an Antarctic Environment. Curr Microbiol [Internet].
- ;59(5):514–9. Disponible en: http://dx.doi.org/10.1007/s00284-009-9469-
- Solar Venero EC, Matera G, Vogel J, López NI, Tribelli PM. Small RNAs in
- the Antarctic bacterium Pseudomonas extremaustralis responsive to oxygen
- availability and oxidative stress. Environ Microbiol Rep [Internet]. 2022.
- Disponible en: https://pubmed.ncbi.nlm.nih.gov/35689330/
- Sawada H, Fujikawa T, Nishiwaki Y, Horita H. Pseudomonas kitaguniensis sp.
- nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Syst Evol
- Microbiol [Internet]. 2020;70(5):3018–26. Disponible en: http://dx.doi.org/10.1099/ijsem.0.004123
- Ballesteros Rojas, Y Identificación de factores asociados a promoción de
- crecimiento vegetal en Bacillus Subtilis Atcc 6633 y Pseudomonas
- Extremaustralis Cmpuj U515 en el modelo de fríjol. [Internet]. Bogotá D.C:
- Universidad Colegio Mayor de Cundinamarca; 2018; 84p.Disponible en: https://repositorio.unicolmayor.edu.co/bitstream/handle/unicolmayor/3760/TRABAJO%20GRADO-YULI%20BALLESTEROS.pdf?sequence=1&isAllowed=y
- Yiseth FM. Identificación in silico de la capacidad de degradación de glifosato
- por Pseudomonas extremaustralis [Internet]. [Bogotá, Colombia]: Universidad
- Antonio Nariño; 2023. Disponible en: http://repositorio.uan.edu.co/handle/123456789/9019
- María TP. Influencia del regulador global Anr en la fisiología de Pseudomonas extremaustralis, una bacteria productora de polihidroxibutirato [Internet]. [Buenos Aires, Argentina]: Universidad de Buenos Aires; 2012. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5021_Tribelli.pdf
- Tribelli PM, Solar Venero EC, Ricardi MM, Gómez-Lozano M, Raiger Iustman
- LJ, Molin S, et al. Novel essential role of ethanol oxidation genes at low
- temperature revealed by transcriptome analysis in the antarctic bacterium
- Pseudomonas extremaustralis. PLoS One [Internet]. 2015;10(12):e0145353.
- Disponible en: http://dx.doi.org/10.1371/journal.pone.0145353
- Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Raiger Iustman
- LJ, et al. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol [Internet]. 2018. Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/29116430/
- Ayub ND, Pettinari MJ, Méndez BS, López NI. The polyhydroxyalkanoate
- genes of a stress resistant Antarctic Pseudomonas are situated within a
- genomic island. Plasmid [Internet]. 2007;58(3):240–8. Disponible en:
- http://dx.doi.org/10.1016/j.plasmid.2007.05.003
- Verónica CM. Identificación y análisis de los genes asociados al metabolismo de polihidroxialcanoatos en Pseudomonas extremaustralis [Internet]. [Buenos Aires, Argentina]: Universidad de Buenos Aires; 2013. Disponible en: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n5288_Catone.pd
- f
- Hnatush S, Ivan Franko National University of Lviv, Lviv, 79005, Ukraine,
- Komplikevych S, Maslovska O, Moroz O, Peretyatko T, et al. Bacteria of the
- genus Pseudomonas isolated from Antarctic substrates. Ukr Antarkt Zh/Ukr
- Antarct J [Internet]. 2021;(2):58–75. Disponible en:
- http://uaj.uac.gov.ua/index.php/uaj/article/view/678
- Dickinson I, Goodall-Copestake W, Thorne M, Schlitt T, Ávila-Jiménez M,
- Pearce D. Extremophiles in an antarctic marine ecosystem. Microorganisms
- [Internet]. 2016;4(1):8. Disponible en: https://www.mdpi.com/2076-2607/4/1/8
- López MAG, Zenteno-Rojas A, Martinez-Romero E, Rincón-Molina CI,
- Vences-Guzmán MA, Ruíz-Valdiviezo VM, et al. Biodegradation and
- bioaccumulation of decachlorobiphenyl (DCB) by native strain Pseudomonas
- extremaustralis ADA-5. Water Air Soil Pollut [Internet]. 2021;232(5).
- Disponible en: http://dx.doi.org/10.1007/s11270-021-05122-2
- Rodriguez Mirque, Y Estudio de la cepa de pseudomonas extremaustralis
- cmpuju 515 como promotora de crecimiento en plantas de tomate. [Internet].
- Bogotá, Distrito Capital: Universidad Colegio Mayor de Cundinamarca; 2019;
- p. Disponible en:
- https://repositorio.unicolmayor.edu.co/handle/unicolmayor/267
- Thomassen GMB, Reiche T, Tennfjord CE, Mehli L. Antibiotic resistance
- properties among Pseudomonas spp. Associated with salmon processing environments. Microorganisms [Internet]. 2022; 10(7):1420. Disponible en:
- https://www.mdpi.com/2076-2607/10/7/1420
- Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas
- genomes: diverse and adaptable. FEMS Microbiol Rev [Internet]. 2011;35(4):652–80. Disponible en: http://dx.doi.org/10.1111/j.1574-
- 2011.00269.x
- Perelomov L, Rajput VD, Gertsen M, Sizova O, Perelomova I, Kozmenko S,
- et al. Ecological features of trace elements tolerant microbes isolated from
- sewage sludge of urban wastewater treatment plant. Stress Biol [Internet].
- Disponible en: https://pubmed.ncbi.nlm.nih.gov/38273092/
- Colonnella MA, Lizarraga L, Rossi L, Díaz Peña R, Egoburo D, López NI, et
- al. Effect of copper on diesel degradation in Pseudomonas extremaustralis.
- Extremophiles [Internet]. 2019 . Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/30328541/
- Giambartolomei L. Análisis de estrategias involucradas con la adaptabilidad al frío y microaerobiosis en Pseudomonas extremaustralis [Internet]. [Buenos
- Aires, Argentina]: Universidad de Buenos Aires; 2023. Disponible en:
- https://bibliotecadigital.exactas.uba.ar/download/seminario/seminario_nBIO001646_Giambartolomei.pdf
- Farkas R, Toumi M, Abbaszade G, Bóka K, Takáts K, Tóth E. The acute
- impact of arsenic as(III) on the prokaryotic community composition and
- selected bacterial strains based on microcosm experiments. Geomicrobiol J
- [Internet]. 2023;40(5):413–26. Disponible en:
- http://dx.doi.org/10.1080/01490451.2023.2181469
- Venero ECS. Mecanismos de adaptabilidad a microaerobiosis y estrés
- oxidativo en Pseudomonas extremaustralis [Internet]. [Buenos Aires,
- Argentina]: UNIVERSIDAD DE BUENOS AIRES; 2020. Disponible en:
- https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n7438_SolarVene
- ro.pdf
- Finore I, Vigneron A, Vincent WF, Leone L, Di Donato P, Schiano Moriello A,
- et al. Novel psychrophiles and exopolymers from permafrost thaw lake
- sediments. Microorganisms [Internet]. 2020;8(9):1282. Disponible en:
- https://www.mdpi.com/2076-2607/8/9/1282
- Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas cyclaminis sp.
- nov., a pathogen causing bacterial bud blight of cyclamen in Japan. Int J Syst
- Evol Microbiol [Internet]. 2019;71(3). Disponible en:
- http://dx.doi.org/10.1099/ijsem.0.004723
- Sawada H, Fujikawa T, Osada S, Satou M. Pseudomonas petroselini sp. nov.,
- a pathogen causing bacterial rot of parsley in Japan. Int J Syst Evol Microbiol
- [Internet]. 2022;72(6). Disponible en: http://dx.doi.org/10.1099/ijsem.0.005424
- Vargas-Ordóñez A, Aguilar-Romero I, Villaverde J, Madrid F, Morillo E.
- Isolation of novel bacterial strains Pseudomonas extremaustralis CSW01 and
- stutzerimonas stutzeri CSW02 from sewage sludge for paracetamol
- biodegradation. Microorganisms [Internet]. 2023 Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/36677487/
- López G, Diaz-Cárdenas C, Shapiro N, Woyke T, Kyrpides NC, David Alzate
- J, et al. Draft genome sequence of Pseudomonas extremaustralis strain
- USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand Genomic Sci [Internet]. 2017 Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/29255573/
- Raiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC,
- López NI. Genome sequence analysis of Pseudomonas extremaustralis
- provides new insights into environmental adaptability and extreme conditions
- resistance. Extremophiles [Internet]. 2015 Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/25316211/
- Tribelli PM, Méndez BS, López NI. Oxygen-sensitive global regulator, anr, is
- involved in the biosynthesis of poly(3-hydroxybutyrate) in Pseudomonas
- extremaustralis. Microb Physiol [Internet]. 2010;19(4):180–8. Disponible en:
- https://karger.com/mmb/article-abstract/19/4/180/197135/Oxygen-Sensitive-
- Global-Regulator-Anr-Is-Involved?redirectedFrom=fulltext
- Tribelli PM, Nikel PI, Oppezzo OJ, López NI. Anr, the anaerobic global
- regulator, modulates the redox state and oxidative stress resistance in
- Pseudomonas extremaustralis. Microbiology [Internet].
- ;159(Pt_2):259–68. Disponible en:
- http://dx.doi.org/10.1099/mic.0.061085-0
- Solar Venero EC, Ricardi MM, Gomez-Lozano M, Molin S, Tribelli PM, López
- NI. Oxidative stress under low oxygen conditions triggers hyperflagellation
- and motility in the Antarctic bacterium Pseudomonas extremaustralis.
- Extremophiles [Internet]. 2019;23(5):587–97. Disponible en:
- http://dx.doi.org/10.1007/s00792-019-01110-x
- Ramzi AB, Matthew Minggu M, Ruslan US, Mohamad Hazwan FK, Mohamed
- Abdul P. Expression of Furfural Reductase Improved Furfural Tolerance in
- Antarctic Bacterium Pseudomonas extremaustralis. Sains Malays [Internet]. 2022;51(10):3163–70. Disponible en: http://www.ukm.my/jsm/pdf_files/SM-
- PDF-51-10-2022/4.pdf
- Nikovaev YA, Borzenkov IA, Demkina EV, Loiko NG, Kanapatskii TA,
- Perminova IV, et al. New biocomposite materials based on hydrocarbon-
- oxidizing microorganisms and their potential for oil products degradation.
- Microbiology [Internet]. 2021;90(6):731–42. Disponible en:
- http://dx.doi.org/10.1134/s0026261721060114
- Ayub ND, Pettinari MJ, Ruiz JA, López NI. A polyhydroxybutyrate-producing
- Pseudomonas sp. Isolated from antarctic environments with high stress
- resistance. Curr Microbiol [Internet]. 2004;49(3). Disponible en:
- http://dx.doi.org/10.1007/s00284-004-4254-2
- Tribelli PM, López NI. Poly(3-hydroxybutyrate) influences biofilm formation
- and motility in the novel Antarctic species Pseudomonas extremaustralis
- under cold conditions. Extremophiles [Internet]. 2011;15(5):541–7. Disponible
- en: http://dx.doi.org/10.1007/s00792-011-0384-1
- Salwoom L, Raja Abd Rahman R, Salleh A, Mohd. Shariff F, Convey P,
- Pearce D, et al. Isolation, characterisation, and lipase production of a cold-
- adapted bacterial strain Pseudomonas sp. LSK25 isolated from Signy Island,
- Antártica. Molecules [Internet]. 2019 [citado el 1 de febrero de
- ;24(4):715. Disponible en: https://www.mdpi.com/1420-3049/24/4/715
- Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for
- maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3
- during low temperature adaptation. Extremophiles [Internet].
- ;13(1):59–66. Disponible en: http://dx.doi.org/10.1007/s00792-008-0197-
- z
- Catone MV, Ruiz JA, Castellanos M, Segura D, Espin G, López NI. High
- polyhydroxybutyrate production in Pseudomonas extremaustralis is
- associated with differential expression of horizontally acquired and core
- genome polyhydroxyalkanoate synthase genes. PLoS One [Internet].
- ;9(6):e98873. Disponible en:
- http://dx.doi.org/10.1371/journal.pone.0098873
- Tribelli PM, Raiger Iustman LJ, Catone MV, Di Martino C, Revale S, Méndez
- BS, et al. Genome sequence of the polyhydroxybutyrate producer
- Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium. J
- Bacteriol [Internet]. 2012;194(9):2381–2. Disponible en:
- http://dx.doi.org/10.1128/JB.00172-12
- Song Q, Deng X, Song R, Song X. Plant growth-promoting rhizobacteria
- promote growth of seedlings, regulate soil microbial community, and alleviate
- damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var.
- mongolica. Plant Dis [Internet]. 2022;106(10):2730–40. Disponible en:
- http://dx.doi.org/10.1094/pdis-11-21-2562-re
- Jiao H, Wang R, Qin W, Yang J. Screening of rhizosphere nitrogen fixing,
- phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.)
- Roem. and the effect on apple growth. J Plant Physiol [Internet].
- ;292(154142):154142. Disponible en:
- http://dx.doi.org/10.1016/j.jplph.2023.154142
- Vetrova AA, Trofimov SY, Kinzhaev RR, Avetov NA, Arzamazova AV, Puntus
- IF, et al. Development of microbial consortium for bioremediation of oil-
- contaminated soils in the middle ob region. Eurasian Soil Sci [Internet]. 2022;55(5):651–62. Disponible en:
- http://dx.doi.org/10.1134/s1064229322050106
- Kim J, Fuller ME, Hatzinger PB, Chu K-H. Draft genomes of three
- nitroguanidine-degrading bacteria: Pseudomonas extremaustralis NQ5 ,
- Arthrobacter strain NQ4, and Arthrobacter strain NQ7. Microbiol Resour
- Announc [Internet]. 2023 Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/37477431/
- Tribelli PM, Pezzoni M, Brito MG, Montesinos NV, Costa CS, López NI.
- Response to lethal UVA radiation in the Antarctic bacterium Pseudomonas
- extremaustralis: polyhydroxybutyrate and cold adaptation as protective
- factors. Extremophiles [Internet]. 2020;24(2):265–75. Disponible en:
- http://dx.doi.org/10.1007/s00792-019-01152-1
- Tribelli PM, Hay AG, López NI. The global anaerobic regulator anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis. PLoS One [Internet].
- ;8(10):e76685. Disponible en:
- http://dx.doi.org/10.1371/journal.pone.0076685
- Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas:
- ecology to biotechnology. Front Microbiol [Internet]. 2023;14:1218708.
- Disponible en: http://dx.doi.org/10.3389/fmicb.2023.1218708
- Tribelli PM, Di Martino C, López NI, Raiger Iustman LJ. Biofilm lifestyle
- enhances diesel bioremediation and biosurfactant production in the Antarctic
- polyhydroxyalkanoate producer Pseudomonas extremaustralis.
- Biodegradation [Internet]. 2012;23(5):645–51. Disponible en:
- http://dx.doi.org/10.1007/s10532-012-9540-2
- Hu Y-Q, Zeng Y-X, Du Y, Zhao W, Li H-R, Han W, et al. Comparative
- genomic analysis of two Arctic Pseudomonas strains reveals insights into the
- aerobic denitrification in cold environments. BMC Genomics [Internet].
- ;24(1). Disponible en: http://dx.doi.org/10.1186/s12864-023-09638-1
- Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L,
- López NI, et al. Novel role of the LPS core glycosyltransferase WapH for cold
- adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS
- One [Internet]. 2018;13(2):e0192559. Disponible en:
- http://dx.doi.org/10.1371/journal.pone.0192559
- Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C.
- Pseudomonas fluorescens CHA0 Produces Enantio-pyochelin, the Optical
- Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin. J Biol
- Chem [Internet]. 2007;282(49):35546–53. Disponible en:
- https://pubmed.ncbi.nlm.nih.gov/17938167/
- Kim J, Fuller ME, Hatzinger PB, Chu K-H. Isolation and characterization of
- nitroguanidine-degrading microorganisms. Sci Total Environ [Internet].
- ;912(169184):169184. Disponible en:
- http://dx.doi.org/10.1016/j.scitotenv.2023.169184
- Ji B, Zhang X, Zhang S, Song H, Kong Z. Insights into the bacterial species
- and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment
- plant by using third-generation sequencing. J Biosci Bioeng [Internet].
- ;128(6):744–50. Disponible en:
- http://dx.doi.org/10.1016/j.jbiosc.2019.06.007
- Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Marshall SH, Olivares-
- Pacheco J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South
- Shetland, Antarctica. Braz J Microbiol [Internet]. 2018;49(4):695–702.
- Disponible en: http://dx.doi.org/10.1016/j.bjm.2018.02.005
- Nie M, Wu C, Tang Y, Shi G, Wang X, Hu C, et al. Selenium and Bacillus
- proteolyticus SES synergistically enhanced ryegrass to remediate Cu–Cd–Cr
- contaminated soil. Environ Pollut [Internet]. 2023;323(121272):121272.
- Disponible en: http://dx.doi.org/10.1016/j.envpol.2023.121272
- Gómez-Lozano M, Marvig RL, Molina-Santiago C, Tribelli PM, Ramos J-L,
- Molin S. Diversity of small RNAs expressed in Pseudomonas species. Environ
- Microbiol Rep [Internet]. 2015;7(2):227–36. Disponible en:
- http://dx.doi.org/10.1111/1758-2229.12233
- Nikolaev Y, Borzenkov I, Demkina E, Loiko N, Kanapatsky T, Perminova I, et
- al. Immobilization of cells of hydrocarbon-oxidizing bacteria for petroleum
- bioremediation using new materials. Int J Environ Res [Internet].
- ;15(6):971–84. Disponible en: http://dx.doi.org/10.1007/s41742-021-
- -5
- Vieto S, Rojas-Gätjens D, Jiménez JI, Chavarría M. The potential of
- Pseudomonas for bioremediation of oxyanions. Environ Microbiol Rep
- [Internet]. 2021;13(6):773–89. Disponible en: http://dx.doi.org/10.1111/1758-
- 12999
- Medić AB, Karadžić IM. Pseudomonas in environmental bioremediation of
- hydrocarbons and phenolic compounds- key catabolic degradation enzymes
- and new analytical platforms for comprehensive investigation. World J
- Microbiol Biotechnol [Internet]. 2022;38(10). Disponible en:
- http://dx.doi.org/10.1007/s11274-022-03349-7
- Rache-Arce DC, Machacado-Salas M, Rosero-García D. Hydrocarbon-
- degrading bacteria in Colombia: systematic review. Biodegradation [Internet].
- ;33(2):99–116. Disponible en: http://dx.doi.org/10.1007/s10532-022-
- -z
- Lorenzo V. Environmental Galenics: large-scale fortification of extant
- microbiomes with engineered bioremediation agents. Philos Trans R Soc
- Lond B Biol Sci [Internet]. 2022;377(1857). Disponible en:
- http://dx.doi.org/10.1098/rstb.2021.0395
- Hassen W, Cherif H, Werhani R, Raddadi N, Neifar M, Hassen A, et al.
- Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas
- species as detoxification agents. Arch Microbiol [Internet].
- ;203(7):4641–51. Disponible en: http://dx.doi.org/10.1007/s00203-021-
- -y
- Ghorbannezhad H, Moghimi H, Dastgheib SMM. Biodegradation of high
- molecular weight hydrocarbons under saline condition by halotolerant Bacillus
- subtilis and its mixed cultures with Pseudomonas species. Sci Rep [Internet].
- ;12(1). Disponible en: http://dx.doi.org/10.1038/s41598-022-17001-9