Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización molecular de microorganismos silvestres asociados a fermentaciones artesanales de cacao en el municipio de Los Andes, Nariño, Colombia

Molecular Characterization of Wild Microorganisms Associated with Artisanal Cacao Fermentations in the Municipality of Los Andes, Nariño, Colombia



Abrir | Descargar


Sección
Artículo Original

Cómo citar
Martinez Muñoz, J. F., Fernandez Izquierdo, P. ., Miramag Yaquen, K. M., & Ortiz Benavidez, F. (2025). Caracterización molecular de microorganismos silvestres asociados a fermentaciones artesanales de cacao en el municipio de Los Andes, Nariño, Colombia. Revista Nova, 23(44), 105-127. https://doi.org/10.22490/24629448.9986

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Objetivo. Caracterización molecular de los microorganismos asociados a la fermentación de cacao en el departamento de Nariño, Colombia.

Método. A través del análisis de las regiones ITS1-5.8S-ITS2 y D1/D2 ARNr (26S) para levaduras, y 16S ARNr para bacterias ácido lácticas (BAL) y bacterias ácido acéticas (BAA).

Resultados. Se identificaron diversos microorganismos involucrados en la fermentación del cacao. Además, se aplicó la técnica in-silico de RFLP (Polimorfismo de Longitud de Fragmentos de Restricción) para resolver las relaciones intraespecíficas y establecer patrones moleculares diferenciados. Se identificaron aislados de Saccharomyces cerevisiae, Pichia kudriavzevii, Candida tropicalis, Candida glabrata, Levilactobacillus brevis, Lactiplantibacillus plantarum, Acetobacter fabarum, Acetobacter okinawensis y Acetobacter tropicalis..

Conclusión. El uso de enzimas de restricción como AluI, MseI, HinfI, HhaI, HaeIII fueron clave para discriminar entre especies y resolver relaciones intraespecíficas en los clados. Estos resultados proporcionan una base sólida para caracterizar mejor la diversidad microbiana en la fermentación del cacao en esta región.


Visitas del artículo 55 | Visitas PDF 29


Descargas

Los datos de descarga todavía no están disponibles.
  1. Fanche S, Tchokonthe A, Diguță C, Kamdem S, Israel R. Antifungal properties of lactic acid bacteria isolated from cocoa beans fermentation in the centre region of Cameroon. Rom Biotechnol Lett. 2020;25(2):1407-17. doi:10.25083/rbl/25.2/1407.1417
  2. Figueroa-Hernández C, Mota-Gutierrez J, Ferrocino I, Hernández-Estrada ZJ, González-Ríos O, Cocolin L, et al. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int J Food Microbiol. 2019;301:41-50. doi:10.1016/j.ijfoodmicro.2019.05.002
  3. Filannino P, Gobbetti M, De Angelis M, Di Cagno R. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria. Appl Environ Microbiol. 2014;80(24):7574-82. doi:10.1128/AEM.02413-14
  4. Gerard L. Caracterización de bacterias del ácido acético destinadas a la producción de vinagres de frutas [tesis doctoral]. Valencia: Universidad Politécnica de Valencia; 2015.
  5. Haile M, Kang WH. Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms. 2019;7(10):401. doi:10.3390/microorganisms7100401
  6. Hall T. BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP/Vista/7/8/10 [software]. 2017.
  7. Hashim HO, Al-Shuhaib MBS. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: a review. J Appl Biotechnol Rep. 2019;6(4):137-44. doi:10.29252/JABR.06.04.02
  8. Herrero E. Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Rev Iberoam Micol. 2005;22(4):217-22. doi:10.1016/S1130-1406(05)70046-2
  9. Ho VTT, Zhao J, Fleet G. The effect of lactic acid bacteria on cocoa bean fermentation. Int J Food Microbiol. 2015;205:54-67. doi:10.1016/j.ijfoodmicro.2015.03.031
  10. Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One. 2012;7(5):e38040. doi:10.1371/journal.pone.0038040
  11. Jespersen L, Nielsen DS, Hønholt S, Jakobsen M. Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res. 2005;5(4-5):441-53. doi:10.1016/j.femsyr.2004.11.002
  12. Karwowska M. Microorganisms in cocoa production. In: Mérillon JM, Ramawat K, editors. Cocoa. New York: Springer; 2021. p. 1-29. doi:10.1007/978-3-319-27787-9_51-1
  13. Lachance MA. Yeasts. In: eLS. Chichester: John Wiley & Sons; 2016. p. 1-11. doi:10.1002/9780470015902.a0000340.pub3
  14. Lefeber T, Janssens M, Camu N, De Vuyst L. Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Appl Environ Microbiol. 2010;76(23):7708-16. doi:10.1128/AEM.01206-10
  15. Lefeber T, Janssens M, Moens F, Gobert W, De Vuyst L. Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria. Appl Environ Microbiol. 2011;77(18):6694-8. doi:10.1128/AEM.05543-11
  16. Lima LJ, Almeida MH, Nout MJ, Zwietering MH. Theobroma cacao L., the food of the gods: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit Rev Food Sci Nutr. 2011;51(8):731-61. doi:10.1080/10408391003799913
  17. Lopez P, García-Cayuela T, Martín R, Pérez-Martínez G. Detección, identificación y tipado de bifidobacterias: una actualización. Rev Esp Quimioter. 2011;24(4):197-206.
  18. López Camelo AF. Manual para la preparación de muestras para análisis de residuos de plaguicidas. Roma: FAO; 2003.
  19. Loreto A, Carbonetto B, Scattolini M, Boscaini F, Franciosi E. Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata mozzarella cheeses. Food Microbiol. 2018;79:48-60. doi:10.1016/j.fm.2018.11.007
  20. Lübeck M, Lübeck PS. Application of Saccharomyces cerevisiae for bioremediation of ochratoxin A. World Mycotoxin J. 2019;12(4):325-40. doi:10.3920/WMJ2018.2384
  21. Magalhães KT, de Melo Pereira GV, Campos CR, Dragone G, Schwan RF. Brazilian kefir: structure, microbial communities and chemical composition. Braz J Microbiol. 2011;42(2):693-702. doi:10.1590/S1517-83822011000200034
  22. Magalhães KT, Pereira GV, Dias DR, Schwan RF. Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J Microbiol Biotechnol. 2010;26(7):1241-50. doi:10.1007/s11274-009-0294-x
  23. Martínez T. Caracterización molecular de levaduras aisladas de procesos fermentativos espontáneos de cacao y desarrollo de un método de PCR-RFLPs para la identificación rápida de especies de Saccharomyces [tesis doctoral]. Valencia: Universidad Politécnica de Valencia; 2006.
  24. Martínez T, Adell C, Zarzo M, Gómez E, Yuste M, González F, et al. Technical approach to cocoa fermentation process by in-field monitoring of redox potential. LWT. 2016;66:306-12. doi:10.1016/j.lwt.2015.10.052
  25. Martínez-Torres T, Adell C, González-Romero F, Zarzo M, Yuste M, Gil JV. Use of different molecular techniques to analyse the dynamics of mixed yeast starter cultures of cocoa fermentation. J Appl Microbiol. 2017;123(5):1252-63. doi:10.1111/jam.13572
  26. Martínez-Torres T, Yuste M, Gil JV. Rapid molecular identification methods to detect Saccharomyces cerevisiae and Saccharomyces paradoxus strains during cocoa fermentation processes. Int J Food Microbiol. 2018;273:1-9. doi:10.1016/j.ijfoodmicro.2018.02.010
  27. McMullin DR, Renaud JB, Barasubiye T, Sumarah MW, Miller JD. Aspergillus cerealis sp. nov., a new species in section Flavi. Mycologia. 2015;107(2):409-18. doi:10.3852/14-152
  28. Meersman E, Steensels J, Struyf N, Paulus T, Saels V, Mathawan M, et al. Tuning chocolate flavor through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl Environ Microbiol. 2016;82(2):732-46. doi:10.1128/AEM.02719-15
  29. Meersman E, Steensels J, Struyf N, Paulus T, Saels V, Mathawan M, et al. Detailed analysis of the microbial population dynamics during Belgian farmhouse sourdough productions reveals a unique complex microbiota. Food Microbiol. 2013;34(1):37-44. doi:10.1016/j.fm.2012.11.007
  30. Meersman E, Steensels J, Struyf N, Paulus T, Saels V, Mathawan M, et al. Large-scale, multi-laboratory evaluation of Saccharomyces cerevisiae yeasts for cocoa fermentation and their potential to influence chocolate flavor. Food Microbiol. 2015;48:243-53. doi:10.1016/j.fm.2014.12.004
  31. Meng X, Liu C, Fan S, Chen L, Zhang J, Wei G, et al. Sugar metabolism of Zygosaccharomyces rouxii and its influence on the flavor compounds in soy sauce fermentation. Food Chem. 2020;310:125943. doi:10.1016/j.foodchem.2019.125943
  32. Meza B, Arrioja-Bretón D, Leal-Díaz AM, Aguilar-González CN, López MG, Mateos-Díaz JC, et al. Development of a potential probiotic fresh cheese using lactic acid bacteria isolated from Mexican kefir grains. LWT. 2019;107:50-6. doi:10.1016/j.lwt.2019.02.076
  33. Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, Brown JS, et al. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One. 2008;3(10):e3311. doi:10.1371/journal.pone.0003311
  34. Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D 3rd, Cornejo O, et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol. 2013;14(6):r53. doi:10.1186/gb-2013-14-6-r53
  35. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol. 2007;114(2):168-86. doi:10.1016/j.ijfoodmicro.2006.09.010
  36. Nielsen DS, Jespersen L. The role of yeasts in cocoa fermentations. In: Querol A, Fleet GH, editors. Yeasts in food and beverages. Berlin, Heidelberg: Springer; 2006. p. 197-207. doi:10.1007/978-3-540-28398-0_9
  37. Ozturk G, Young GM. Food fermentation: microorganisms with technological importance. In: Motarjemi Y, Moy GG, Todd E, editors. Encyclopedia of food safety. Cambridge: Academic Press; 2014. p. 340-4. doi:10.1016/B978-0-12-378612-8.00270-5
  38. Papalexandratou Z, Falony G, Romanens E, Jiménez JC, Amores F, Daniel HM, et al. Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol. 2011;77(21):7698-714. doi:10.1128/AEM.05523-11
  39. Papalexandratou Z, Camu N, Falony G, De Vuyst L. Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiol. 2011;28(5):964-73. doi:10.1016/j.fm.2011.01.010
  40. Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel HM, De Vuyst L. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol. 2013;35(2):73-85. doi:10.1016/j.fm.2013.02.015
  41. Papalexandratou Z, Vrancken G, De Bruyne K, Vandamme P, De Vuyst L. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol. 2011;28(7):1326-38. doi:10.1016/j.fm.2011.06.003
  42. Pereira GVD, Soccol VT, Soccol CR. Current state of research on cocoa and coffee fermentations. Curr Opin Food Sci. 2016;7:50-7. doi:10.1016/j.cofs.2015.11.001
  43. Pereira GVD, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl Environ Microbiol. 2012;78(15):5395-405. doi:10.1128/AEM.01144-12
  44. Pereira GVD, Miguel MGCP, Ramos CL, Schwan RF. Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl Environ Microbiol. 2013;79(16):5115-25. doi:10.1128/AEM.01295-13
  45. Rodríguez-Campos J, Escalona-Buendía HB, Contreras-Ramos SM, Orozco-Avila I, Jaramillo-Flores ME, Lugo-Cervantes E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012;132(1):277-88. doi:10.1016/j.foodchem.2011.10.078
  46. Romanens E, De Vuyst L, Camu N, Figuerora-Hernández C, De Winter T, Binati RL, et al. Influence of both the substrate composition and the starter culture on the production of aroma compounds during cocoa pulp fermentations. Food Microbiol. 2018;69:11-22. doi:10.1016/j.fm.2017.07.014
  47. Rossi S, Turchetti B, Sileoni V, Marconi O, Perretti G. Evaluation of yeasts for use in high gravity brewing. J Inst Brew. 2018;124(2):154-61. doi:10.1002/jib.491
  48. Saini A, Sharma S, Yadav SK. Microbial dynamics of traditional food fermentation. In: Mérillon JM, Ramawat KG, editors. Fermented foods, part II: Technological interventions. Cham: Springer; 2018. p. 1-24. doi:10.1007/978-3-319-74820-0_26-1
  49. Schwan RF, Wheals AE. The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr. 2004;44(4):205-21. doi:10.1080/10408690490464104
  50. Serra JL, Moura FG, Morocho V, Gori A, De Souza-Cruz PB, Tavares FC, et al. Yeast species diversity during spontaneous fermentation of cocoa beans from Southern Brazil. Food Res Int. 2019;115:189-96. doi:10.1016/j.foodres.2018.08.037
  51. Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of industrial microbes. Curr Biol. 2019;29(10):R381-93. doi:10.1016/j.cub.2019.04.025
  52. Sundara PS, Bandyopadhyay R, Chandrashekar A. Fungal colonization of developing kernels and grain mould symptoms in sorghum. Ann Appl Biol. 1998;133(1):55-71. doi:10.1111/j.1744-7348.1998.tb05803.x
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-9. doi:10.1093/molbev/mst197
  54. Thompson SS, Miller KB, Lopez AS. Cocoa and coffee. In: Doyle MP, Beuchat LR, Montville TJ, editors. Food microbiology: fundamentals and frontiers. 2nd ed. Washington, DC: ASM Press; 2001. p. 721-33.
  55. Visintin S, Alessandria V, Valente A, Dolci P, Cocolin L. Molecular identification and physiological characterization of yeasts isolated from Italian-type salami. Food Microbiol. 2016;58:64-72. doi:10.1016/j.fm.2016.03.008
  56. Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel HM. Yeasts identified from spontaneous cocoa bean fermentations of different origins represent a metabolically versatile species community. Food Microbiol. 2010;27(8):964-73. doi:10.1016/j.fm.2010.06.002
  57. Vrancken G, Gregory J, Romero LF, De Vuyst L. Species diversity, community dynamics, and metabolite kinetics of yeasts during cocoa bean fermentation in vessels. Food Microbiol. 2011;28(3):457-64. doi:10.1016/j.fm.2010.10.010
  58. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8(2):240-59. doi:10.1128/CMR.8.2.240
  59. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22. doi:10.1016/B978-0-12-372180-8.50042-1
  60. Yao F, Müller V. Glucose metabolism of the thermoacidophilic archaeon Picrophilus torridus during growth on different sugars and under varying oxygen conditions. Archaea. 2014;2014:546540. doi:10.1155/2014/546540
Sistema OJS 3.4.0.5 - Metabiblioteca |