Caracterización molecular de microorganismos silvestres asociados a fermentaciones artesanales de cacao en el municipio de Los Andes, Nariño, Colombia
Molecular Characterization of Wild Microorganisms Associated with Artisanal Cacao Fermentations in the Municipality of Los Andes, Nariño, Colombia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Mostrar biografía de los autores
El presente estudio se centra en la caracterización molecular de los microorganismos asociados a la fermentación de cacao en el departamento de Nariño, Colombia. A través del análisis de las regiones ITS1-5.8S-ITS2 y D1/D2 ARNr (26S) para levaduras, y 16S ARNr para bacterias ácido lácticas (BAL) y bacterias ácido acéticas (BAA), se identificaron diversos microorganismos involucrados en la fermentación del cacao. Además, se aplicó la técnica in-silico de RFLP (Polimorfismo de Longitud de Fragmentos de Restricción) para resolver las relaciones intraespecíficas y establecer patrones moleculares diferenciados. Se identificaron aislados de Saccharomyces cerevisiae, Pichia kudriavzevii, Candida tropicalis, Candida glabrata, Levilactobacillus brevis, Lactiplantibacillus plantarum, Acetobacter fabarum, Acetobacter okinawensis y Acetobacter tropicalis.. El uso de enzimas de restricción como AluI, MseI, HinfI, HhaI, HaeIII fueron clave para discriminar entre especies y resolver relaciones intraespecíficas en los clados. Estos resultados proporcionan una base sólida para caracterizar mejor la diversidad microbiana en la fermentación del cacao en esta región.
Visitas del artículo 12 | Visitas PDF 15
Descargas
- Agyirifo, D.S., Wamalwa, M., Otwe, E.P., Galyuon, I., Runo, S., Takrama, J., Ngeranwa, J., 2019. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 5, e02170. https://doi.org/10.1016/j.heliyon.2019.e02170
- Badrie, N., Bekele, F., Sikora, E., Sikora, M., 2015. Cocoa Agronomy, Quality, Nutritional, and Health Aspects. Crit. Rev. Food Sci. Nutr. 55, 620–659. https://doi.org/10.1080/10408398.2012.669428
- Batista, N.N., Ramos, C.L., Dias, D.R., Pinheiro, A.C.M., Schwan, R.F., 2016. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate. J. Food Sci. Technol. 53, 1101–1110. https://doi.org/10.1007/s13197-015-2132-5
- Batista, N.N., Ramos, C.L., Ribeiro, D.D., Pinheiro, A.C.M., Schwan, R.F., 2015. Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT - Food Sci. Technol. 63, 221–227. https://doi.org/10.1016/j.lwt.2015.03.051
- Beheshti-Maal, K., Shafiee, N., 2019. A novel thermo- ethanol tolerant Acetobacter okinawensis KBMNS-IAUF-1 isolated from Iranian nectarine as a potential for nectarine vinegar production in food biotechnology 1–14. https://doi.org/10.21203/rs.2.11979/v1
- Blanco, P., Sieiro, C., Villa, T.G., 1999. Production of pectic enzymes in yeasts. FEMS Microbiol. Lett. 175, 1–9. https://doi.org/10.1111/j.1574-6968.1999.tb13595.x
- Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A.S., Sakthikumar, S., Munro, C.A., Rheinbay, E., Grabherr, M., Forche, A., Reedy, J.L., Agrafioti, I., Arnaud, M.B., Bates, S., Brown, A.J.P., Brunke, S., Costanzo, M.C., Fitzpatrick, D.A., De Groot, P.W.J., Harris, D., Hoyer, L.L., Hube, B., Klis, F.M., Kodira, C., Lennard, N., Logue, M.E., Martin, R., Neiman, A.M., Nikolaou, E., Quail, M.A., Quinn, J., Santos, M.C., Schmitzberger, F.F., Sherlock, G., Shah, P., Silverstein, K.A.T., Skrzypek, M.S., Soll, D., Staggs, R., Stansfield, I., Stumpf, M.P.H., Sudbery, P.E., Srikantha, T., Zeng, Q., Berman, J., Berriman, M., Heitman, J., Gow, N.A.R., Lorenz, M.C., Birren, B.W., Kellis, M., Cuomo, C.A., 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662. https://doi.org/10.1038/nature08064
- Camu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J.S., Vancanneyt, M., De Vuyst, L., 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73, 1809–1824. https://doi.org/10.1128/AEM.02189-06
- Castro-Alayo, E.M., Idrogo-Vásquez, G., Siche, R., Cardenas-Toro, F.P., 2019. Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e01157
- Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69(2), 330–339. https://doi.org/10.1016/j.mimet.2007.02.005
- Clavijo, A., Calderón, I. L., & Paneque, P. (2011). Yeast assessment during alcoholic fermentation inoculated with a natural “pied de cuve” or a commercial yeast strain. World Journal of Microbiology and Biotechnology, 27(7), 1569–1577. https://doi.org/10.1007/s11274-010-0609-y
- Cornejo, O.E., Yee, M.C., Dominguez, V., Andrews, M., Sockell, A., Strandberg, E., Livingstone, D., Stack, C., Romero, A., Umaharan, P., Royaert, S., Tawari, N.R., Ng, P., Gutierrez, O., Phillips, W., Mockaitis, K., Bustamante, C.D., Motamayor, J.C., 2018. Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Commun. Biol. 1, 1–12. https://doi.org/10.1038/s42003-018-0168-6
- Crafack, M., Saerens, S., Knudsen, M., Swiegers, J.H., Heimdal, H., Takrama, J., Nielsen, D.S., Mikkelsen, M.B., Blennow, A., Lowor, S., Petersen, G.B., 2013. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int. J. Food Microbiol. 167, 103–116. https://doi.org/10.1016/j.ijfoodmicro.2013.06.024
- Darriba, D., Taboada, G., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8). 2012.
- Davis, M. W., & Jorgensen, E. M. (2022). ApE, a plasmid editor: a freely available DNA manipulation and visualization program. Frontiers in Bioinformatics, 2, 818619.
- De Vuyst, L., Weckx, S., 2016. Biotechnology of Lactic Acid Bacteria Novel Applications, Second Edi. ed. John Wiley & Sons, Ltd.
- Delgado-Ospina, J., Triboletti, S., Alessandria, V., Serio, A., Sergi, M., Paparella, A., Rantsiou, K., Chaves-López, C., 2020. Functional biodiversity of yeasts isolated from Colombian fermented and dry Cocoa beans. Microorganisms 8, 1–17. https://doi.org/10.3390/microorganisms8071086
- Del-Prado, R., Cubas, P., Lumbsch, H. T., Divakar, P. K., Blanco, O., de Paz, G. A., Molina, M. C., & Crespo, A. (2010). Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics and Evolution, 56(1), 125–133. https://doi.org/10.1016/j.ympev.2010.04.014
- Díaz-Muñoz, C., De Vuyst, L., 2021. Functional yeast starter cultures for cocoa fermentation. J. Appl. Microbiol. 1–28. https://doi.org/10.1111/jam.15312
- Dlauchy, D., Tornai-Lehoczki, J., & Péter, G. (1999). Restriction enzyme analysis of PCR amplified rDNA as a taxonomic tool in yeast identification. Systematic and Applied Microbiology, 22(3), 445–453. https://doi.org/10.1016/S0723-2020(99)80054-X
- Dzogbefia, V.P., Buamah, R., Oldham, J.H., 1999. The controlled fermentation of cocoa (Theobroma cacao L)using yeasts: Enzymatic process and associated physico-chemical changes in cocoa sweatings. Food Biotechnol. 13, 1–12. https://doi.org/10.1080/08905439609549958
- Ehrmann, M.A., Vogel, R.F., 2005. Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci. Technol. 16, 31–42. https://doi.org/10.1016/j.tifs.2004.06.004
- Escobar, S., Santander, M., Useche, P., Contreras, C., Rodríguez, J., 2020. Aligning strategic objectives with research and development activities in a soft commodity sector: A technological plan for colombian cocoa producers. Agric. 10. https://doi.org/10.3390/agriculture10050141
- Escobar, S., Santander, M., Zuluaga, M., Chacón, I., Rodríguez, J., Vaillant, F., 2021. Fine cocoa beans production: Tracking aroma precursors through a comprehensive analysis of flavor attributes formation. Food Chem. 365. https://doi.org/10.1016/j.foodchem.2021.130627
- Essia-Ngang, J.J., Yadang, G., Sado Kamdem, S.L., Kouebou, C.P., Youte Fanche, S.A., Tsochi Kougan, D.L., Tsoungui, A., Etoa, F.X., 2015. Antifungal properties of selected lactic acid bacteria and application in the biological control of ochratoxin A producing fungi during cocoa fermentation. Biocontrol Sci. Technol. 25, 245–259. https://doi.org/10.1080/09583157.2014.969195
- Facundo, X., Apodaca, M., Crisci, J., 2020. ANÁLISIS MULTIVARIADO PARA DATOS BIOLÓGICOS Teoría y su aplicación utilizando el lenguaje R, 1era Edici. ed. Fundación de Historia Natural Félix de Azara, Buenos Aires.
- Fadda, M. E., Pisano, M. B., Scaccabarozzi, L., Mossa, V., Deplano, M., Moroni, P., Liciardi, M., & Cosentino, S. (2013). Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection. Journal of Dairy Science, 96(12), 7692–7697. https://doi.org/10.3168/jds.2013-6996
- Fanche, S., Tchokonthe, A., Diguță, C., Kamdem, S., Israel, R., 2020. Antifungal properties of lactic acid bacteria isolated from cocoa beans fermentation in the centre region of Cameroon. Rom. Biotechnol. Lett. 25, 1407–1417. https://doi.org/10.25083/rbl/25.2/1407.1417
- Figueroa-Hernández, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z.J., González-Ríos, O., Cocolin, L., Suárez-Quiroz, M.L., 2019. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int. J. Food Microbiol. 301, 41–50. https://doi.org/10.1016/j.ijfoodmicro.2019.05.002
- Filannino, P., Gobbetti, M., De Angelis, M., Di Cagno, R., 2014. Hydroxycinnamic acids used as external acceptors of electrons: An energetic advantage for strictly heterofermentative lactic acid bacteria. Appl. Environ. Microbiol. 80, 7574–7582. https://doi.org/10.1128/AEM.02413-14
- Gerard, L., 2015. Caracterización De Bacterias del acido acetico destinadas a la produccion de vinagres de frutas. Univ. politectina Val. Universidad politectina de Valencia.
- Haile, M., & Kang, W. H. (2019). Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms, 7(10). https://doi.org/10.3390/microorganisms7100401
- Hall Tom, 2017. BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP/Vista/78/10.
- Hashim, H. O., & Al-Shuhaib, M. B. S. (2019). Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. Journal of Applied Biotechnology Reports, 6(4), 137–144. https://doi.org/10.29252/JABR.06.04.02
- Herrero, E., 2005. Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Rev. Iberoam. Micol. 22, 217–222. https://doi.org/10.1016/S1130-1406(05)70046-2
- Ho, V.T.T., Zhao, J., Fleet, G., 2015. The effect of lactic acid bacteria on cocoa bean fermentation. Int. J. Food Microbiol. 205, 54–67. https://doi.org/10.1016/j.ijfoodmicro.2015.03.031
- Illeghems, K., de Vuyst, L., Papalexandratou, Z., Weckx, S., 2012. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 7. https://doi.org/10.1371/journal.pone.0038040
- Illeghems, K., Pelicaen, R., De Vuyst, L., Weckx, S., 2016. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol. 58, 68–78. https://doi.org/10.1016/j.fm.2016.03.013
- Jang, S. J., Lim, S. H., Ko, J. H., Oh, B. H., Kim, S. M., Song, Y. C., Yim, S. M., Lee, Y. W., Choe, Y. B., & Ahn, K. J. (2009). The investigation on the distribution of mcdassezia yeasts on the normal Korean skin by 26S rDNA PCR-RFLP. Annals of Dermatology, 21(1), 18–26. https://doi.org/10.5021/ad.2009.21.1.18
- Jespersen, L., Nielsen, D.S., Hønholt, S., Jakobsen, M., 2005. Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res. 5, 441–453. https://doi.org/10.1016/j.femsyr.2004.11.002
- Kirchmayr, M. R., & Flores, E. (2010). PCR-RFLP de las regiones ITS-5.8S como herramienta de identificación de levaduras: ventajas y desventajas. Revista Electrónica y Tecnológica E-Gnosis, 8(January 2019), 1–12.
- Koffi, O., Samagaci, L., Goualie, B., & Niamke, S. (2017). Diversity of Yeasts Involved in Cocoa Fermentation of Six Major Cocoa-Producing Regions in Ivory Coast. European Scientific Journal, ESJ, 13(30), 496. https://doi.org/10.19044/esj.2017.v13n30p496
- Koné, M.K., Guéhi, S.T., Durand, N., Ban-Koffi, L., Berthiot, L., Tachon, A.F., Brou, K., Boulanger, R., Montet, D., 2016. Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res. Int. 89, 910–917. https://doi.org/10.1016/j.foodres.2016.04.010
- Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L.W., Schulz, H., 2015. Fast and neat - Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chem. 181, 152–159. https://doi.org/10.1016/j.foodchem.2015.02.084
- Kratzer, U., Frank, R., Kalbacher, H., Biehl, B., Wöstemeyer, J., Voigt, J., 2009. Subunit structure of the vicilin-like globular storage protein of cocoa seeds and the origin of cocoa- and chocolate-specific aroma precursors. Food Chem. 113, 903–913. https://doi.org/10.1016/j.foodchem.2008.08.017
- Lagunes-Gálvez, S., Loiseau, G., Paredes, J.L., Barel, M., Guiraud, J.P., 2007. Study on the microflora and biochemistry of cocoa fermentation in the Dominican Republic. Int. J. Food Microbiol. 114, 124–130. https://doi.org/10.1016/j.ijfoodmicro.2006.10.041
- Lefeber, T., Janssens, M., Moens, F., Gobert, W., De Vuyst, L., 2011. Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria. Appl. Environ. Microbiol. 77, 6694–6698. https://doi.org/10.1128/AEM.00594-11
- Mamlouk, D., Gullo, M., 2013. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Indian J. Microbiol. 53, 377–384. https://doi.org/10.1007/s12088-013-0414-z
- Mancini, A., Lazzi, C., Bernini, V., Neviani, E., & Gatti, M. (2012). Identification of dairy lactic acid bacteria by tRNAAla-23S rDNA-RFLP. Journal of Microbiological Methods, 91(3), 380–390. https://doi.org/10.1016/j.mimet.2012.10.003
- Masoud, W., Jespersen, L., 2006. Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. Int. J. Food Microbiol. 110, 291–296. https://doi.org/10.1016/j.ijfoodmicro.2006.04.030
- Meersman, E., Steensels, J., Mathawan, M., Wittocx, P.J., Saels, V., Struyf, N., Bernaert, H., Vrancken, G., Verstrepen, K.J., 2013. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS One 8. https://doi.org/10.1371/journal.pone.0081559
- Meersman, E., Steensels, J., Struyf, N., Paulus, T., Saels, V., Mathawan, M., Allegaert, L., Vrancken, G., Verstrepen, K.J., 2016. Tuning chocolate flavor through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl. Environ. Microbiol. 82, 732–746. https://doi.org/10.1128/AEM.02556-15
- Mendoza-Salazar, M., Martínez Álvarez, O., Ardila Castañeda, M., Lizarazo Medina, P., 2022. Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiol. 101. https://doi.org/10.1016/j.fm.2021.103896
- Mirhendi, H., Makimura, K., Zomorodian, K., Yamada, T., Sugita, T., & Yamaguchi, H. (2005). A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 61(2), 281–284. https://doi.org/10.1016/j.mimet.2004.11.016
- Motamayor, J.C., Lachenaud, P., da Silva e Mota, J.W., Loor, R., Kuhn, D.N., Brown, J.S., Schnell, R.J., 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3. https://doi.org/10.1371/journal.pone.0003311
- Moyer, C. L., Tiedje, J. M., Dobbs, F. C., & Karl, D. M. (1996). A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: Efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Applied and Environmental Microbiology, 62(7), 2501–2507. https://doi.org/10.1128/aem.62.7.2501-2507.1996
- Nielsen, D., Crafack, M., Jespersen, L., Jakobsen, M., 2013. The Microbiology of Cocoa Fermentation. Choc. Heal. Nutr. 1–553. https://doi.org/10.1007/978-1-61779-803-0
- Osorio-Guarín, J.A., Berdugo-Cely, J., Coronado, R.A., Zapata, Y.P., Quintero, C., Gallego-Sánchez, G., Yockteng, R., 2017. Colombia a source of cacao genetic diversity as revealed by the population structure analysis of germplasm bank of theobroma cacao l. Front. Plant Sci. 8, 1–13. https://doi.org/10.3389/fpls.2017.01994
- Ouattara, Elias, R.J., Dudley, E.G., 2020. Microbial synergy between Pichia kudriazevii YS201 and Bacillus subtilis BS38 improves pulp degradation and aroma production in cocoa pulp simulation medium. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e03269
- Ouattara, Niamké, S.L., 2021. Mapping the functional and strain diversity of the main microbiota involved in cocoa fermentation from Cote d’Ivoire. Food Microbiol. 98. https://doi.org/10.1016/j.fm.2021.103767
- Ouattara, Ouattara, H.G., Goualie, B.G., Kouame, L.M., Niamke, S.L., 2014. Biochemical and functional properties of lactic acid bacteria isolated from Ivorian cocoa fermenting beans. J. Appl. Biosci. 77, 6489. https://doi.org/10.4314/jab.v77i1.9
- Papalexandratou, Z., Vrancken, G., de Bruyne, K., Vandamme, P., de Vuyst, L., 2011. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol. 28, 1326–1338. https://doi.org/10.1016/j.fm.2011.06.003
- Park, S. H., Jung, J. H., Seo, D. H., Lee, H. L., Kim, G. W., Park, S. Y., Shin, W. C., Hong, S., & Park, C. S. (2012). Differentiation of lactic acid bacteria based on RFLP analysis of the tuf gene. Food Science and Biotechnology, 21(3), 911–915. https://doi.org/10.1007/s10068-012-0119-9
- Pereira, G., Alvarez, J.P., Neto, D.P.D.C., Soccol, V.T., Tanobe, V.O., Rogez, H., Soccol, C.R., 2017. Great intraspecies diversity of Pichia kudriavzevii in cocoa fermentation highlights the importance of yeast strain selection for flavor modulation of cocoa beans. Lwt 84, 290–297. https://doi.org/10.1016/j.lwt.2017.05.073
- Pitiwittayakul, N., Yukphan, P., Sintuprapa, W., Yamada, Y., Theeragool, G., 2015. Identification of acetic acid bacteria isolated in Thailand and assigned to the genus Acetobacter by groEL gene sequence analysis. Ann. Microbiol. 65, 1557–1564. https://doi.org/10.1007/s13213-014-0994-9
- Porter, T. M., & Brian-Golding, G. (2011). Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? New Phytologist, 192(3), 775–782. https://doi.org/10.1111/j.1469-8137.2011.03838.x
- R Core Team, 2023. R: The R Project for Statistical Computing.
- Ramos, C.L., Dias, D.R., Miguel, M.G. da C.P., Schwan, R.F., 2014. Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation. Food Res. Int. 64, 908–918. https://doi.org/10.1016/j.foodres.2014.08.033
- Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L., 2013. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36, 22–29. https://doi.org/10.1016/j.fm.2013.03.010
- Roini, C., Asbirayani Limatahu, N., Mulya Hartati, T., & Sundari. (2019). Characterization of Cocoa Pulp (Theobroma cacao L) from South Halmahera as an Alternative Feedstock for Bioethanol Production. IOP Conference Series: Earth and Environmental Science, 276(1). https://doi.org/10.1088/1755-1315/276/1/012038
- Romanens, E., Freimüller Leischtfeld, S., Volland, A., Stevens, M., Krähenmann, U., Isele, D., Fischer, B., Meile, L., Miescher Schwenninger, S., 2019. Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. Int. J. Food Microbiol. 290, 262–272. https://doi.org/10.1016/j.ijfoodmicro.2018.10.001
- Romero-Cortes, T., Cuervo-Parra, J.A., José Robles-Olvera, V., Rangel Cortes, E., López Pérez, P.A., 2018. Experimental and Kinetic Production of Ethanol Using Mucilage Juice Residues from Cocoa Processing. Int. J. Chem. React. Eng. 16, 1–16. https://doi.org/10.1515/ijcre-2017-0262
- Ruiz, A., Poblet, M., Mas, A., Guillamón, J.M., 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Syst. Evol. Microbiol. 50, 1981–1987. https://doi.org/10.1099/00207713-50-6-1981
- R Core Team. (2023). R: The R Project for Statistical Computing. https://www.r-project.org/
- Salas-Tovar, J.A., Flores-Gallegos, A.C., Contreras-Esquivel, J.C., Escobedo-García, S., Morlett-Chávez, J.A., Rodríguez-Herrera, R., 2017. Analytical Methods for Pectin Methylesterase Activity Determination: a Review. Food Anal. Methods 10, 3634–3646. https://doi.org/10.1007/s12161-017-0934-y
- Samagaci, L., Ouattara, H., Niamké, S., & Lemaire, M. (2016). Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Research International, 89, 773–780. https://doi.org/10.1016/j.foodres.2016.10.007
- Sandhya, M.V.S., Yallappa, B.S., Varadaraj, M.C., Puranaik, J., Rao, L.J., Janardhan, P., Murthy, P.S., 2016. Inoculum of the starter consortia and interactive metabolic process in enhancing quality of cocoa bean (Theobroma cacao) fermentation. LWT - Food Sci. Technol. 65, 731–738. https://doi.org/10.1016/j.lwt.2015.09.002
- Santander-Muñoz, M., Rodríguez Cortina, J., Vaillant, F.E., Escobar Parra, S., 2020. An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Crit. Rev. Food Sci. Nutr. 60, 1593–1613. https://doi.org/10.1080/10408398.2019.1581726
- Sarbu, I., Csutak, O., 2019. The Microbiology of Cocoa Fermentation, Caffeinated and Cocoa Based Beverages. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815864-7.00013-1
- Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K. D., Bai, F. Y., Barreto, R. W., Begerow, D., Bergeron, M. J., Blackwell, M., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109
- Smid, E.J., Kleerebezem, M., 2014. Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 5, 313–326. https://doi.org/10.1146/annurev-food-030713-092339
- Sukha, D.A., Butler, D.R., Umaharan, P., Boult, E., 2008. The use of an optimised organoleptic assessment protocol to describe and quantify different flavour attributes of cocoa liquors made from Ghana and Trinitario beans. Eur. Food Res. Technol. 226, 405–413. https://doi.org/10.1007/s00217-006-0551-2
- Swofford, D., 2015. PAUP* (* Phylogenetic Analysis Using PAUP).
- Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., van Etten, J., 2012. Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS One 7. https://doi.org/10.1371/journal.pone.0047676
- Thompson, S.S., Miller, K.B., Lopez, A.S., 2007. Cocoa and coffee, Third Edit. ed, Food Microbiology fundamentals and frontiers. Washington DC. https://doi.org/10.2436/im.v10i1.9606
- Todorov, S.D., de Melo-Franco, B., 2010. Lactobacillus plantarum: Characterization of the species and application in food production. Food Rev. Int. 26, 205–229. https://doi.org/10.1080/87559129.2010.484113
- Tovar, M. D. L., Tibasosa, G., González, C.M., Alvarez, K.B., Hernandez, M. D. P. L., Villamizar, F.R., 2020. Isolation and identification of microbial species found in cocoa fermentation as microbial starter culture candidates for cocoa bean fermentation in Colombia. Pelita Perkeb. (a Coffee Cocoa Res. Journal) 36, 236–248. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i3.443
- Tuenter, E., Delbaere, C., De Winne, A., Bijttebier, S., Custers, D., Foubert, K., Van Durme, J., Messens, K., Dewettinck, K., Pieters, L., 2020. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Res. Int. 130, 108943. https://doi.org/10.1016/j.foodres.2019.108943
- Viesser, J.A., de Melo Pereira, G. V., de Carvalho Neto, D., Rogez, H., Góes-Neto, A., Azevedo, V., Brenig, B., Aburjaile, F., Soccol, C.R., 2021. Co-culturing fructophilic lactic acid bacteria and yeast enhanced sugar metabolism and aroma formation during cocoa beans fermentation. Int. J. Food Microbiol. 339. https://doi.org/10.1016/j.ijfoodmicro.2020.109015
- Viesser, J.A., Pereira, G., de Carvalho Neto, D.P., Vandenberghe, L.P. d. S., Azevedo, V., Brenig, B., Rogez, H., Góes-Neto, A., Soccol, C.R., 2020. Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: Isolation, selection and evaluation. Food Res. Int. 136, 109478. https://doi.org/10.1016/j.foodres.2020.109478
- Visintin, S., Ramos, L., Batista, N., Dolci, P., Schwan, F., Cocolin, L., 2017. Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. Int. J. Food Microbiol. 257, 31–40. https://doi.org/10.1016/j.ijfoodmicro.2017.06.004
- Weather Spark, 2022. El clima en Sotomayor [WWW Document]. URL https://es.weatherspark.com/y/20650/Clima-promedio-en-Sotomayor-Colombia-durante-todo-el-año (accessed 8.16.22).
- Willey, B., 2014. Lactic Acid Bacteria, Wilhelm Ho. ed.
- Yadav, S., Yadav, P.K., Yadav, D., Yadav, K.D.S., 2009. Pectin lyase: A review. Process Biochem. 44, 1–10. https://doi.org/10.1016/j.procbio.2008.09.012
- Yamada, Y., 2016. Systematics of Acetic Acid Bacteria, Acetic Acid Bacteria: Ecology and Physiology. Springer Japan. https://doi.org/10.1007/978-4-431-55933-7_14
- Yu, J., Sun, Z., Liu, W., Zhang, J., Sun, T., Bao, Q., Zhang, H., 2009. Rapid identification of lactic acid bacterial isolated from home-made fermented milk in Tibet. J. Gen. Appl. Microbiol. 55, 181–190. https://doi.org/10.2323/jgam.55.181
- Zhang, Y., Vadlani, P. V., 2015. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 119, 694–699. https://doi.org/10.1016/j.jbiosc.2014.10.027
- Ziegleder, G., 2009. Flavour Development in Cocoa and Chocolate. Ind. Choc. Manuf. Use Fourth Ed. 169–191. https://doi.org/10.1002/9781444301588.ch8