Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización molecular de microorganismos silvestres asociados a fermentaciones artesanales de cacao en el municipio de Los Andes, Nariño, Colombia

Molecular Characterization of Wild Microorganisms Associated with Artisanal Cacao Fermentations in the Municipality of Los Andes, Nariño, Colombia



Abrir | Descargar


Sección
Artículo Original

Cómo citar
Martinez Muñoz, J. F., Fernandez Izquierdo, P. ., Miramag Yaquen, K. M., & Ortiz Benavidez, F. (2025). Caracterización molecular de microorganismos silvestres asociados a fermentaciones artesanales de cacao en el municipio de Los Andes, Nariño, Colombia. REVISTA NOVA , 23(44). https://doi.org/10.22490/

Dimensions
PlumX
Citaciones
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

El presente estudio se centra en la caracterización molecular de los microorganismos asociados a la fermentación de cacao en el departamento de Nariño, Colombia. A través del análisis de las regiones ITS1-5.8S-ITS2 y D1/D2 ARNr (26S) para levaduras, y 16S ARNr para bacterias ácido lácticas (BAL) y bacterias ácido acéticas (BAA), se identificaron diversos microorganismos involucrados en la fermentación del cacao. Además, se aplicó la técnica in-silico de RFLP (Polimorfismo de Longitud de Fragmentos de Restricción) para resolver las relaciones intraespecíficas y establecer patrones moleculares diferenciados. Se identificaron aislados de Saccharomyces cerevisiae, Pichia kudriavzevii, Candida tropicalis, Candida glabrata, Levilactobacillus brevis, Lactiplantibacillus plantarum, Acetobacter fabarum, Acetobacter okinawensis y Acetobacter tropicalis.. El uso de enzimas de restricción como AluI, MseI, HinfI, HhaI, HaeIII fueron clave para discriminar entre especies y resolver relaciones intraespecíficas en los clados. Estos resultados proporcionan una base sólida para caracterizar mejor la diversidad microbiana en la fermentación del cacao en esta región.


Visitas del artículo 12 | Visitas PDF 15


Descargas

Los datos de descarga todavía no están disponibles.
  1. Agyirifo, D.S., Wamalwa, M., Otwe, E.P., Galyuon, I., Runo, S., Takrama, J., Ngeranwa, J., 2019. Metagenomics analysis of cocoa bean fermentation microbiome identifying species diversity and putative functional capabilities. Heliyon 5, e02170. https://doi.org/10.1016/j.heliyon.2019.e02170
  2. Badrie, N., Bekele, F., Sikora, E., Sikora, M., 2015. Cocoa Agronomy, Quality, Nutritional, and Health Aspects. Crit. Rev. Food Sci. Nutr. 55, 620–659. https://doi.org/10.1080/10408398.2012.669428
  3. Batista, N.N., Ramos, C.L., Dias, D.R., Pinheiro, A.C.M., Schwan, R.F., 2016. The impact of yeast starter cultures on the microbial communities and volatile compounds in cocoa fermentation and the resulting sensory attributes of chocolate. J. Food Sci. Technol. 53, 1101–1110. https://doi.org/10.1007/s13197-015-2132-5
  4. Batista, N.N., Ramos, C.L., Ribeiro, D.D., Pinheiro, A.C.M., Schwan, R.F., 2015. Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT - Food Sci. Technol. 63, 221–227. https://doi.org/10.1016/j.lwt.2015.03.051
  5. Beheshti-Maal, K., Shafiee, N., 2019. A novel thermo- ethanol tolerant Acetobacter okinawensis KBMNS-IAUF-1 isolated from Iranian nectarine as a potential for nectarine vinegar production in food biotechnology 1–14. https://doi.org/10.21203/rs.2.11979/v1
  6. Blanco, P., Sieiro, C., Villa, T.G., 1999. Production of pectic enzymes in yeasts. FEMS Microbiol. Lett. 175, 1–9. https://doi.org/10.1111/j.1574-6968.1999.tb13595.x
  7. Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A.S., Sakthikumar, S., Munro, C.A., Rheinbay, E., Grabherr, M., Forche, A., Reedy, J.L., Agrafioti, I., Arnaud, M.B., Bates, S., Brown, A.J.P., Brunke, S., Costanzo, M.C., Fitzpatrick, D.A., De Groot, P.W.J., Harris, D., Hoyer, L.L., Hube, B., Klis, F.M., Kodira, C., Lennard, N., Logue, M.E., Martin, R., Neiman, A.M., Nikolaou, E., Quail, M.A., Quinn, J., Santos, M.C., Schmitzberger, F.F., Sherlock, G., Shah, P., Silverstein, K.A.T., Skrzypek, M.S., Soll, D., Staggs, R., Stansfield, I., Stumpf, M.P.H., Sudbery, P.E., Srikantha, T., Zeng, Q., Berman, J., Berriman, M., Heitman, J., Gow, N.A.R., Lorenz, M.C., Birren, B.W., Kellis, M., Cuomo, C.A., 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662. https://doi.org/10.1038/nature08064
  8. Camu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J.S., Vancanneyt, M., De Vuyst, L., 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73, 1809–1824. https://doi.org/10.1128/AEM.02189-06
  9. Castro-Alayo, E.M., Idrogo-Vásquez, G., Siche, R., Cardenas-Toro, F.P., 2019. Formation of aromatic compounds precursors during fermentation of Criollo and Forastero cocoa. Heliyon 5. https://doi.org/10.1016/j.heliyon.2019.e01157
  10. Chakravorty, S., Helb, D., Burday, M., Connell, N., & Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69(2), 330–339. https://doi.org/10.1016/j.mimet.2007.02.005
  11. Clavijo, A., Calderón, I. L., & Paneque, P. (2011). Yeast assessment during alcoholic fermentation inoculated with a natural “pied de cuve” or a commercial yeast strain. World Journal of Microbiology and Biotechnology, 27(7), 1569–1577. https://doi.org/10.1007/s11274-010-0609-y
  12. Cornejo, O.E., Yee, M.C., Dominguez, V., Andrews, M., Sockell, A., Strandberg, E., Livingstone, D., Stack, C., Romero, A., Umaharan, P., Royaert, S., Tawari, N.R., Ng, P., Gutierrez, O., Phillips, W., Mockaitis, K., Bustamante, C.D., Motamayor, J.C., 2018. Population genomic analyses of the chocolate tree, Theobroma cacao L., provide insights into its domestication process. Commun. Biol. 1, 1–12. https://doi.org/10.1038/s42003-018-0168-6
  13. Crafack, M., Saerens, S., Knudsen, M., Swiegers, J.H., Heimdal, H., Takrama, J., Nielsen, D.S., Mikkelsen, M.B., Blennow, A., Lowor, S., Petersen, G.B., 2013. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int. J. Food Microbiol. 167, 103–116. https://doi.org/10.1016/j.ijfoodmicro.2013.06.024
  14. Darriba, D., Taboada, G., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8). 2012.
  15. Davis, M. W., & Jorgensen, E. M. (2022). ApE, a plasmid editor: a freely available DNA manipulation and visualization program. Frontiers in Bioinformatics, 2, 818619.
  16. De Vuyst, L., Weckx, S., 2016. Biotechnology of Lactic Acid Bacteria Novel Applications, Second Edi. ed. John Wiley & Sons, Ltd.
  17. Delgado-Ospina, J., Triboletti, S., Alessandria, V., Serio, A., Sergi, M., Paparella, A., Rantsiou, K., Chaves-López, C., 2020. Functional biodiversity of yeasts isolated from Colombian fermented and dry Cocoa beans. Microorganisms 8, 1–17. https://doi.org/10.3390/microorganisms8071086
  18. Del-Prado, R., Cubas, P., Lumbsch, H. T., Divakar, P. K., Blanco, O., de Paz, G. A., Molina, M. C., & Crespo, A. (2010). Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics and Evolution, 56(1), 125–133. https://doi.org/10.1016/j.ympev.2010.04.014
  19. Díaz-Muñoz, C., De Vuyst, L., 2021. Functional yeast starter cultures for cocoa fermentation. J. Appl. Microbiol. 1–28. https://doi.org/10.1111/jam.15312
  20. Dlauchy, D., Tornai-Lehoczki, J., & Péter, G. (1999). Restriction enzyme analysis of PCR amplified rDNA as a taxonomic tool in yeast identification. Systematic and Applied Microbiology, 22(3), 445–453. https://doi.org/10.1016/S0723-2020(99)80054-X
  21. Dzogbefia, V.P., Buamah, R., Oldham, J.H., 1999. The controlled fermentation of cocoa (Theobroma cacao L)using yeasts: Enzymatic process and associated physico-chemical changes in cocoa sweatings. Food Biotechnol. 13, 1–12. https://doi.org/10.1080/08905439609549958
  22. Ehrmann, M.A., Vogel, R.F., 2005. Molecular taxonomy and genetics of sourdough lactic acid bacteria. Trends Food Sci. Technol. 16, 31–42. https://doi.org/10.1016/j.tifs.2004.06.004
  23. Escobar, S., Santander, M., Useche, P., Contreras, C., Rodríguez, J., 2020. Aligning strategic objectives with research and development activities in a soft commodity sector: A technological plan for colombian cocoa producers. Agric. 10. https://doi.org/10.3390/agriculture10050141
  24. Escobar, S., Santander, M., Zuluaga, M., Chacón, I., Rodríguez, J., Vaillant, F., 2021. Fine cocoa beans production: Tracking aroma precursors through a comprehensive analysis of flavor attributes formation. Food Chem. 365. https://doi.org/10.1016/j.foodchem.2021.130627
  25. Essia-Ngang, J.J., Yadang, G., Sado Kamdem, S.L., Kouebou, C.P., Youte Fanche, S.A., Tsochi Kougan, D.L., Tsoungui, A., Etoa, F.X., 2015. Antifungal properties of selected lactic acid bacteria and application in the biological control of ochratoxin A producing fungi during cocoa fermentation. Biocontrol Sci. Technol. 25, 245–259. https://doi.org/10.1080/09583157.2014.969195
  26. Facundo, X., Apodaca, M., Crisci, J., 2020. ANÁLISIS MULTIVARIADO PARA DATOS BIOLÓGICOS Teoría y su aplicación utilizando el lenguaje R, 1era Edici. ed. Fundación de Historia Natural Félix de Azara, Buenos Aires.
  27. Fadda, M. E., Pisano, M. B., Scaccabarozzi, L., Mossa, V., Deplano, M., Moroni, P., Liciardi, M., & Cosentino, S. (2013). Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection. Journal of Dairy Science, 96(12), 7692–7697. https://doi.org/10.3168/jds.2013-6996
  28. Fanche, S., Tchokonthe, A., Diguță, C., Kamdem, S., Israel, R., 2020. Antifungal properties of lactic acid bacteria isolated from cocoa beans fermentation in the centre region of Cameroon. Rom. Biotechnol. Lett. 25, 1407–1417. https://doi.org/10.25083/rbl/25.2/1407.1417
  29. Figueroa-Hernández, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z.J., González-Ríos, O., Cocolin, L., Suárez-Quiroz, M.L., 2019. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int. J. Food Microbiol. 301, 41–50. https://doi.org/10.1016/j.ijfoodmicro.2019.05.002
  30. Filannino, P., Gobbetti, M., De Angelis, M., Di Cagno, R., 2014. Hydroxycinnamic acids used as external acceptors of electrons: An energetic advantage for strictly heterofermentative lactic acid bacteria. Appl. Environ. Microbiol. 80, 7574–7582. https://doi.org/10.1128/AEM.02413-14
  31. Gerard, L., 2015. Caracterización De Bacterias del acido acetico destinadas a la produccion de vinagres de frutas. Univ. politectina Val. Universidad politectina de Valencia.
  32. Haile, M., & Kang, W. H. (2019). Isolation, identification, and characterization of pectinolytic yeasts for starter culture in coffee fermentation. Microorganisms, 7(10). https://doi.org/10.3390/microorganisms7100401
  33. Hall Tom, 2017. BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP/Vista/78/10.
  34. Hashim, H. O., & Al-Shuhaib, M. B. S. (2019). Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. Journal of Applied Biotechnology Reports, 6(4), 137–144. https://doi.org/10.29252/JABR.06.04.02
  35. Herrero, E., 2005. Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Rev. Iberoam. Micol. 22, 217–222. https://doi.org/10.1016/S1130-1406(05)70046-2
  36. Ho, V.T.T., Zhao, J., Fleet, G., 2015. The effect of lactic acid bacteria on cocoa bean fermentation. Int. J. Food Microbiol. 205, 54–67. https://doi.org/10.1016/j.ijfoodmicro.2015.03.031
  37. Illeghems, K., de Vuyst, L., Papalexandratou, Z., Weckx, S., 2012. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 7. https://doi.org/10.1371/journal.pone.0038040
  38. Illeghems, K., Pelicaen, R., De Vuyst, L., Weckx, S., 2016. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol. 58, 68–78. https://doi.org/10.1016/j.fm.2016.03.013
  39. Jang, S. J., Lim, S. H., Ko, J. H., Oh, B. H., Kim, S. M., Song, Y. C., Yim, S. M., Lee, Y. W., Choe, Y. B., & Ahn, K. J. (2009). The investigation on the distribution of mcdassezia yeasts on the normal Korean skin by 26S rDNA PCR-RFLP. Annals of Dermatology, 21(1), 18–26. https://doi.org/10.5021/ad.2009.21.1.18
  40. Jespersen, L., Nielsen, D.S., Hønholt, S., Jakobsen, M., 2005. Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res. 5, 441–453. https://doi.org/10.1016/j.femsyr.2004.11.002
  41. Kirchmayr, M. R., & Flores, E. (2010). PCR-RFLP de las regiones ITS-5.8S como herramienta de identificación de levaduras: ventajas y desventajas. Revista Electrónica y Tecnológica E-Gnosis, 8(January 2019), 1–12.
  42. Koffi, O., Samagaci, L., Goualie, B., & Niamke, S. (2017). Diversity of Yeasts Involved in Cocoa Fermentation of Six Major Cocoa-Producing Regions in Ivory Coast. European Scientific Journal, ESJ, 13(30), 496. https://doi.org/10.19044/esj.2017.v13n30p496
  43. Koné, M.K., Guéhi, S.T., Durand, N., Ban-Koffi, L., Berthiot, L., Tachon, A.F., Brou, K., Boulanger, R., Montet, D., 2016. Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Res. Int. 89, 910–917. https://doi.org/10.1016/j.foodres.2016.04.010
  44. Krähmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L.W., Schulz, H., 2015. Fast and neat - Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chem. 181, 152–159. https://doi.org/10.1016/j.foodchem.2015.02.084
  45. Kratzer, U., Frank, R., Kalbacher, H., Biehl, B., Wöstemeyer, J., Voigt, J., 2009. Subunit structure of the vicilin-like globular storage protein of cocoa seeds and the origin of cocoa- and chocolate-specific aroma precursors. Food Chem. 113, 903–913. https://doi.org/10.1016/j.foodchem.2008.08.017
  46. Lagunes-Gálvez, S., Loiseau, G., Paredes, J.L., Barel, M., Guiraud, J.P., 2007. Study on the microflora and biochemistry of cocoa fermentation in the Dominican Republic. Int. J. Food Microbiol. 114, 124–130. https://doi.org/10.1016/j.ijfoodmicro.2006.10.041
  47. Lefeber, T., Janssens, M., Moens, F., Gobert, W., De Vuyst, L., 2011. Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria. Appl. Environ. Microbiol. 77, 6694–6698. https://doi.org/10.1128/AEM.00594-11
  48. Mamlouk, D., Gullo, M., 2013. Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. Indian J. Microbiol. 53, 377–384. https://doi.org/10.1007/s12088-013-0414-z
  49. Mancini, A., Lazzi, C., Bernini, V., Neviani, E., & Gatti, M. (2012). Identification of dairy lactic acid bacteria by tRNAAla-23S rDNA-RFLP. Journal of Microbiological Methods, 91(3), 380–390. https://doi.org/10.1016/j.mimet.2012.10.003
  50. Masoud, W., Jespersen, L., 2006. Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. Int. J. Food Microbiol. 110, 291–296. https://doi.org/10.1016/j.ijfoodmicro.2006.04.030
  51. Meersman, E., Steensels, J., Mathawan, M., Wittocx, P.J., Saels, V., Struyf, N., Bernaert, H., Vrancken, G., Verstrepen, K.J., 2013. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS One 8. https://doi.org/10.1371/journal.pone.0081559
  52. Meersman, E., Steensels, J., Struyf, N., Paulus, T., Saels, V., Mathawan, M., Allegaert, L., Vrancken, G., Verstrepen, K.J., 2016. Tuning chocolate flavor through development of thermotolerant Saccharomyces cerevisiae starter cultures with increased acetate ester production. Appl. Environ. Microbiol. 82, 732–746. https://doi.org/10.1128/AEM.02556-15
  53. Mendoza-Salazar, M., Martínez Álvarez, O., Ardila Castañeda, M., Lizarazo Medina, P., 2022. Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiol. 101. https://doi.org/10.1016/j.fm.2021.103896
  54. Mirhendi, H., Makimura, K., Zomorodian, K., Yamada, T., Sugita, T., & Yamaguchi, H. (2005). A simple PCR-RFLP method for identification and differentiation of 11 Malassezia species. Journal of Microbiological Methods, 61(2), 281–284. https://doi.org/10.1016/j.mimet.2004.11.016
  55. Motamayor, J.C., Lachenaud, P., da Silva e Mota, J.W., Loor, R., Kuhn, D.N., Brown, J.S., Schnell, R.J., 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS One 3. https://doi.org/10.1371/journal.pone.0003311
  56. Moyer, C. L., Tiedje, J. M., Dobbs, F. C., & Karl, D. M. (1996). A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: Efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Applied and Environmental Microbiology, 62(7), 2501–2507. https://doi.org/10.1128/aem.62.7.2501-2507.1996
  57. Nielsen, D., Crafack, M., Jespersen, L., Jakobsen, M., 2013. The Microbiology of Cocoa Fermentation. Choc. Heal. Nutr. 1–553. https://doi.org/10.1007/978-1-61779-803-0
  58. Osorio-Guarín, J.A., Berdugo-Cely, J., Coronado, R.A., Zapata, Y.P., Quintero, C., Gallego-Sánchez, G., Yockteng, R., 2017. Colombia a source of cacao genetic diversity as revealed by the population structure analysis of germplasm bank of theobroma cacao l. Front. Plant Sci. 8, 1–13. https://doi.org/10.3389/fpls.2017.01994
  59. Ouattara, Elias, R.J., Dudley, E.G., 2020. Microbial synergy between Pichia kudriazevii YS201 and Bacillus subtilis BS38 improves pulp degradation and aroma production in cocoa pulp simulation medium. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e03269
  60. Ouattara, Niamké, S.L., 2021. Mapping the functional and strain diversity of the main microbiota involved in cocoa fermentation from Cote d’Ivoire. Food Microbiol. 98. https://doi.org/10.1016/j.fm.2021.103767
  61. Ouattara, Ouattara, H.G., Goualie, B.G., Kouame, L.M., Niamke, S.L., 2014. Biochemical and functional properties of lactic acid bacteria isolated from Ivorian cocoa fermenting beans. J. Appl. Biosci. 77, 6489. https://doi.org/10.4314/jab.v77i1.9
  62. Papalexandratou, Z., Vrancken, G., de Bruyne, K., Vandamme, P., de Vuyst, L., 2011. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol. 28, 1326–1338. https://doi.org/10.1016/j.fm.2011.06.003
  63. Park, S. H., Jung, J. H., Seo, D. H., Lee, H. L., Kim, G. W., Park, S. Y., Shin, W. C., Hong, S., & Park, C. S. (2012). Differentiation of lactic acid bacteria based on RFLP analysis of the tuf gene. Food Science and Biotechnology, 21(3), 911–915. https://doi.org/10.1007/s10068-012-0119-9
  64. Pereira, G., Alvarez, J.P., Neto, D.P.D.C., Soccol, V.T., Tanobe, V.O., Rogez, H., Soccol, C.R., 2017. Great intraspecies diversity of Pichia kudriavzevii in cocoa fermentation highlights the importance of yeast strain selection for flavor modulation of cocoa beans. Lwt 84, 290–297. https://doi.org/10.1016/j.lwt.2017.05.073
  65. Pitiwittayakul, N., Yukphan, P., Sintuprapa, W., Yamada, Y., Theeragool, G., 2015. Identification of acetic acid bacteria isolated in Thailand and assigned to the genus Acetobacter by groEL gene sequence analysis. Ann. Microbiol. 65, 1557–1564. https://doi.org/10.1007/s13213-014-0994-9
  66. Porter, T. M., & Brian-Golding, G. (2011). Are similarity- or phylogeny-based methods more appropriate for classifying internal transcribed spacer (ITS) metagenomic amplicons? New Phytologist, 192(3), 775–782. https://doi.org/10.1111/j.1469-8137.2011.03838.x
  67. R Core Team, 2023. R: The R Project for Statistical Computing.
  68. Ramos, C.L., Dias, D.R., Miguel, M.G. da C.P., Schwan, R.F., 2014. Impact of different cocoa hybrids (Theobroma cacao L.) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation. Food Res. Int. 64, 908–918. https://doi.org/10.1016/j.foodres.2014.08.033
  69. Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L., 2013. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 36, 22–29. https://doi.org/10.1016/j.fm.2013.03.010
  70. Roini, C., Asbirayani Limatahu, N., Mulya Hartati, T., & Sundari. (2019). Characterization of Cocoa Pulp (Theobroma cacao L) from South Halmahera as an Alternative Feedstock for Bioethanol Production. IOP Conference Series: Earth and Environmental Science, 276(1). https://doi.org/10.1088/1755-1315/276/1/012038
  71. Romanens, E., Freimüller Leischtfeld, S., Volland, A., Stevens, M., Krähenmann, U., Isele, D., Fischer, B., Meile, L., Miescher Schwenninger, S., 2019. Screening of lactic acid bacteria and yeast strains to select adapted anti-fungal co-cultures for cocoa bean fermentation. Int. J. Food Microbiol. 290, 262–272. https://doi.org/10.1016/j.ijfoodmicro.2018.10.001
  72. Romero-Cortes, T., Cuervo-Parra, J.A., José Robles-Olvera, V., Rangel Cortes, E., López Pérez, P.A., 2018. Experimental and Kinetic Production of Ethanol Using Mucilage Juice Residues from Cocoa Processing. Int. J. Chem. React. Eng. 16, 1–16. https://doi.org/10.1515/ijcre-2017-0262
  73. Ruiz, A., Poblet, M., Mas, A., Guillamón, J.M., 2000. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int. J. Syst. Evol. Microbiol. 50, 1981–1987. https://doi.org/10.1099/00207713-50-6-1981
  74. R Core Team. (2023). R: The R Project for Statistical Computing. https://www.r-project.org/
  75. Salas-Tovar, J.A., Flores-Gallegos, A.C., Contreras-Esquivel, J.C., Escobedo-García, S., Morlett-Chávez, J.A., Rodríguez-Herrera, R., 2017. Analytical Methods for Pectin Methylesterase Activity Determination: a Review. Food Anal. Methods 10, 3634–3646. https://doi.org/10.1007/s12161-017-0934-y
  76. Samagaci, L., Ouattara, H., Niamké, S., & Lemaire, M. (2016). Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Food Research International, 89, 773–780. https://doi.org/10.1016/j.foodres.2016.10.007
  77. Sandhya, M.V.S., Yallappa, B.S., Varadaraj, M.C., Puranaik, J., Rao, L.J., Janardhan, P., Murthy, P.S., 2016. Inoculum of the starter consortia and interactive metabolic process in enhancing quality of cocoa bean (Theobroma cacao) fermentation. LWT - Food Sci. Technol. 65, 731–738. https://doi.org/10.1016/j.lwt.2015.09.002
  78. Santander-Muñoz, M., Rodríguez Cortina, J., Vaillant, F.E., Escobar Parra, S., 2020. An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Crit. Rev. Food Sci. Nutr. 60, 1593–1613. https://doi.org/10.1080/10408398.2019.1581726
  79. Sarbu, I., Csutak, O., 2019. The Microbiology of Cocoa Fermentation, Caffeinated and Cocoa Based Beverages. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815864-7.00013-1
  80. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., Crous, P. W., Miller, A. N., Wingfield, M. J., Aime, M. C., An, K. D., Bai, F. Y., Barreto, R. W., Begerow, D., Bergeron, M. J., Blackwell, M., … Schindel, D. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 6241–6246. https://doi.org/10.1073/pnas.1117018109
  81. Smid, E.J., Kleerebezem, M., 2014. Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 5, 313–326. https://doi.org/10.1146/annurev-food-030713-092339
  82. Sukha, D.A., Butler, D.R., Umaharan, P., Boult, E., 2008. The use of an optimised organoleptic assessment protocol to describe and quantify different flavour attributes of cocoa liquors made from Ghana and Trinitario beans. Eur. Food Res. Technol. 226, 405–413. https://doi.org/10.1007/s00217-006-0551-2
  83. Swofford, D., 2015. PAUP* (* Phylogenetic Analysis Using PAUP).
  84. Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., van Etten, J., 2012. Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS One 7. https://doi.org/10.1371/journal.pone.0047676
  85. Thompson, S.S., Miller, K.B., Lopez, A.S., 2007. Cocoa and coffee, Third Edit. ed, Food Microbiology fundamentals and frontiers. Washington DC. https://doi.org/10.2436/im.v10i1.9606
  86. Todorov, S.D., de Melo-Franco, B., 2010. Lactobacillus plantarum: Characterization of the species and application in food production. Food Rev. Int. 26, 205–229. https://doi.org/10.1080/87559129.2010.484113
  87. Tovar, M. D. L., Tibasosa, G., González, C.M., Alvarez, K.B., Hernandez, M. D. P. L., Villamizar, F.R., 2020. Isolation and identification of microbial species found in cocoa fermentation as microbial starter culture candidates for cocoa bean fermentation in Colombia. Pelita Perkeb. (a Coffee Cocoa Res. Journal) 36, 236–248. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i3.443
  88. Tuenter, E., Delbaere, C., De Winne, A., Bijttebier, S., Custers, D., Foubert, K., Van Durme, J., Messens, K., Dewettinck, K., Pieters, L., 2020. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Res. Int. 130, 108943. https://doi.org/10.1016/j.foodres.2019.108943
  89. Viesser, J.A., de Melo Pereira, G. V., de Carvalho Neto, D., Rogez, H., Góes-Neto, A., Azevedo, V., Brenig, B., Aburjaile, F., Soccol, C.R., 2021. Co-culturing fructophilic lactic acid bacteria and yeast enhanced sugar metabolism and aroma formation during cocoa beans fermentation. Int. J. Food Microbiol. 339. https://doi.org/10.1016/j.ijfoodmicro.2020.109015
  90. Viesser, J.A., Pereira, G., de Carvalho Neto, D.P., Vandenberghe, L.P. d. S., Azevedo, V., Brenig, B., Rogez, H., Góes-Neto, A., Soccol, C.R., 2020. Exploring the contribution of fructophilic lactic acid bacteria to cocoa beans fermentation: Isolation, selection and evaluation. Food Res. Int. 136, 109478. https://doi.org/10.1016/j.foodres.2020.109478
  91. Visintin, S., Ramos, L., Batista, N., Dolci, P., Schwan, F., Cocolin, L., 2017. Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. Int. J. Food Microbiol. 257, 31–40. https://doi.org/10.1016/j.ijfoodmicro.2017.06.004
  92. Weather Spark, 2022. El clima en Sotomayor [WWW Document]. URL https://es.weatherspark.com/y/20650/Clima-promedio-en-Sotomayor-Colombia-durante-todo-el-año (accessed 8.16.22).
  93. Willey, B., 2014. Lactic Acid Bacteria, Wilhelm Ho. ed.
  94. Yadav, S., Yadav, P.K., Yadav, D., Yadav, K.D.S., 2009. Pectin lyase: A review. Process Biochem. 44, 1–10. https://doi.org/10.1016/j.procbio.2008.09.012
  95. Yamada, Y., 2016. Systematics of Acetic Acid Bacteria, Acetic Acid Bacteria: Ecology and Physiology. Springer Japan. https://doi.org/10.1007/978-4-431-55933-7_14
  96. Yu, J., Sun, Z., Liu, W., Zhang, J., Sun, T., Bao, Q., Zhang, H., 2009. Rapid identification of lactic acid bacterial isolated from home-made fermented milk in Tibet. J. Gen. Appl. Microbiol. 55, 181–190. https://doi.org/10.2323/jgam.55.181
  97. Zhang, Y., Vadlani, P. V., 2015. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J. Biosci. Bioeng. 119, 694–699. https://doi.org/10.1016/j.jbiosc.2014.10.027
  98. Ziegleder, G., 2009. Flavour Development in Cocoa and Chocolate. Ind. Choc. Manuf. Use Fourth Ed. 169–191. https://doi.org/10.1002/9781444301588.ch8
Sistema OJS 3.4.0.5 - Metabiblioteca |